Advertisement

JETP Letters

, Volume 110, Issue 6, pp 424–429 | Cite as

Quantum Effects in the Capacitance of Field-Effect Transistors with a Double Quantum Well

  • A. A. KapustinEmail author
  • S. I. Dorozhkin
  • I. B. Fedorov
  • V. Umansky
  • J. H. Smet
Condensed Matter
  • 8 Downloads

Abstract

The compressibility of electrons in a bilayer electron system implemented in a GaAs double quantum well is investigated. Manifestations of the negative compressibility of a low-density two-dimensional electron system in zero and quantizing magnetic fields are observed. It is found that the magnetic field ranges where incompressible phases at the spin-resolved Landau level filling factors of 2 and 1 exist in the layer with the higher electron density are broadened considerably upon the filling of the other layer. The effect is explained by the stabilization of the quantum Hall effect states owing to the transfer of electrons from the layer with the lower density. The magnitude of jumps in the chemical potential for the corresponding quantum Hall effect states is estimated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 17-02-00769). V. Umansky and J. H. Smet acknowledge the support of the German-Israeli Foundation for Scientific Research and Development (GIF).

References

  1. 1.
    J. P. Eisenstein, Ann. Rev. Condens. Matter Phys. 5, 159 (2014).ADSCrossRefGoogle Scholar
  2. 2.
    A. R. Champagne, A. D. K. Finck, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 78, 205310 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    H. Deng, Y. Liu, I. Jo, L. N. Pfeiffer, K. W. West, K. W. Baldwin, and M. Shayegan, Phys. Rev. B 96, 081102 (R) (2017).ADSCrossRefGoogle Scholar
  4. 4.
    J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Appl. Phys. Lett. 57, 2324 (1990).ADSCrossRefGoogle Scholar
  5. 5.
    U. S. de Cumis, J. Waldie, A. F. Croxall, D. Taneja, J. Llandro, I. Farrer, H. E. Beere, and D. A. Ritchie, Appl. Phys. Lett. 110, 072105 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    V. M. Pudalov, S. G. Semenchinskii, and V. S. Edel’man, JETP Lett. 39, 576 (1984).ADSGoogle Scholar
  7. 7.
    V. M. Pudalov, S. G. Semenchinskii, and V. S. Edel’man, Sov. Phys. JETP 62, 1079 (1985).Google Scholar
  8. 8.
    T. P. Smith, B. B. Goldberg, P. J. Stiles, and M. Heiblum, Phys. Rev. B 32, 2696(R) (1985).ADSCrossRefGoogle Scholar
  9. 9.
    S. V. Kravchenko, V. M. Pudalov, and S. G. Semenchinsky, Phys. Lett. A 141, 71 (1989).ADSCrossRefGoogle Scholar
  10. 10.
    S. I. Dorozhkin, J. H. Smet, K. von Klitzing, V. Umansky, R. J. Haug, and K. Ploog, Phys. Rev. B 63, 121301(R) (2001).ADSCrossRefGoogle Scholar
  11. 11.
    S. I. Dorozhkin, A. A. Kapustin, V. Umansky, K. von Klitzing, and J. H. Smet, Phys. Rev. Lett. 117, 176801 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    S. I. Dorozhkin, A. A. Kapustin, I. B. Fedorov, V. Umansky, K. von Klitzing, and J. H. Smet, J. Appl. Phys. 123, 084301 (2018).ADSCrossRefGoogle Scholar
  13. 13.
    B. M. Hunt, J. I. A. Li, A. A. Zibrov, L. Wang, T. Taniguchi, K. Watanabe, J. Hone, C. R. Dean, M. Zaletel, R. C. Ashoori, and A. F. Young, Nat. Commun. 8, 948 (2017).ADSCrossRefGoogle Scholar
  14. 14.
    S. Luryi, Appl. Phys. Lett. 52, 501 (1988).ADSCrossRefGoogle Scholar
  15. 15.
    S. Nagano, K. S. Singwi, and S. Ohnishi, Phys. Rev. B 29, 1209 (1984).ADSCrossRefGoogle Scholar
  16. 16.
    J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 68, 674 (1992).ADSCrossRefGoogle Scholar
  17. 17.
    A. L. Efros, Solid State Commun. 67, 1019 (1988).ADSCrossRefGoogle Scholar
  18. 18.
    S. I. Dorozhkin, A. A. Shashkin, N. B. Zhitenev, and V. T. Dolgopolov, JETP Lett. 44, 241 (1986).ADSGoogle Scholar
  19. 19.
    A. G. Davies, C. H. W. Barnes, K. R. Zolleis, J. T. Nicholls, M. Y. Simmons, and D. A. Ritchie, Phys. Rev. B 54, R17331 (1996).ADSCrossRefGoogle Scholar
  20. 20.
    S. I. Dorozhkin, JETP Lett. 103, 513 (2016).ADSCrossRefGoogle Scholar
  21. 21.
    T. Ando and Y. Uemura, J. Phys. Soc. Jpn. 37, 1044 (1974).ADSCrossRefGoogle Scholar
  22. 22.
    A. Usher, R. J. Nicholas, J. J. Harris, and C. T. Foxon, Phys. Rev. B 41, 1129 (1990).ADSCrossRefGoogle Scholar
  23. 23.
    V. T. Dolgopolov, A. A. Shashkin, A. V. Aristov, D. Schmerek, W. Hansen, J. P. Kotthaus, and M. Holland, Phys. Rev. Lett. 79, 729 (1997).ADSCrossRefGoogle Scholar
  24. 24.
    V. S. Khrapai, A. A. Shashkin, E. L. Shangina, V. Pellegrini, F. Beltram, G. Biasiol, and L. Sorba, Phys. Rev. B 72, 035344 (2005).ADSCrossRefGoogle Scholar
  25. 25.
    A. B. Van’kov, L. V. Kulik, I. V. Kukushkin, V. E. Kirpichev, S. Dickmann, V. M. Zhilin, J. H. Smet, K. von Klitzing, and W. Wegscheider, Phys. Rev. Lett. 97, 246801 (2006).ADSCrossRefGoogle Scholar
  26. 26.
    Yu. A. Bychkov, S. V. Iordanskii, and G. M. Eliashberg, JETP Lett. 33, 143 (1981).ADSGoogle Scholar
  27. 27.
    C. Kallin and B. I. Halperin, Phys. Rev. B 30, 5655 (1984).ADSCrossRefGoogle Scholar
  28. 28.
    G. A. Baraff and D. C. Tsui, Phys. Rev. B 24, 2274 (1981).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • A. A. Kapustin
    • 1
    Email author
  • S. I. Dorozhkin
    • 1
  • I. B. Fedorov
    • 1
  • V. Umansky
    • 2
  • J. H. Smet
    • 3
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Department of PhysicsWeizmann Institute of ScienceRehovotIsrael
  3. 3.Max-Planck-Institut für FestkörperforschungStuttgartGermany

Personalised recommendations