JETP Letters

, Volume 110, Issue 6, pp 382–386 | Cite as

On the Search for the Electric Dipole Moment of the Electron: P-, T-Odd Faraday Effect on a PbF Molecular Beam

  • D. V. ChubukovEmail author
  • L. V. Skripnikov
  • L. N. Labzowsky
Fields, Particles, and Nuclei


It has been proposed to measure the electric dipole moment of the electron on the basis of the observation of the P-, T-odd Faraday effect on a molecular beam intersecting a cavity using cavity-enhanced intracavity laser absorption spectroscopy. The effective electric field acting on the electric dipole moment of the electron, as well as the molecular parameter of the scalar-pseudoscalar nucleus-electron interaction, has been calculated for the ground and excited electronic states of the lead monofluoride molecule. The simulation of the experiment has shown that the proposed approach allows improving the current bounds on the electric dipole moment of the electron and the scalar-pseudoscalar nucleus-electron interaction constant by six orders of magnitude.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are grateful to T.A. Isaev, A.N. Petrov, and P. Rakitzis for stimulating discussions. The calculations were performed using resources of the Collective Usage Center “Modeling and Predicting of the Properties of Materials,” Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute.


This work (preparation of the manuscript, simulation of the experiment, and determination of the optimal parameters) was supported by the Russian Science Foundation (project no. 17-12-01035). The calculation of the effective electric fields for a molecule was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics BASIS (project nos. 17-15-577-1 and 18-1-3-55-1) and by the Council of the President of the Russian Federation for State Support of Young Scientists and Leading Scientific Schools (project no. MK-2230.2018.2).


  1. 1.
    I. B. Khriplovich, Parity Nonconservation in Atomic Phenomena (Nauka, Moscow, 1988; CRC. Boc. Raton, FL, 1991).Google Scholar
  2. 2.
    J. S. Ginges and V. V. Flambaum, Phys. Rep. 397, 63 (2004).ADSCrossRefGoogle Scholar
  3. 3.
    M. S. Safronova, D. Budker, D. d. Mille, D. F. J. Kimball, A. Derevianko, and C. W. Clark, Rev. Mod. Phys. 90, 025008 (2018).ADSCrossRefGoogle Scholar
  4. 4.
    V. Andreev et al. (ACME Collab.), Nature (London, U.K.) 562, 355 (2018).ADSCrossRefGoogle Scholar
  5. 5.
    A. V. Titov, N. S. Mosyagin, A. N. Petrov, T. A. Isaev, and D. d. Mille, Prog. Theor. Chem. Phys. 15, 253 (2006).CrossRefGoogle Scholar
  6. 6.
    L. V. Skripnikov, J. Chem. Phys. 147, 021101 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    P. G. H. Sandars, At. Phys. 4, 71 (1975).Google Scholar
  8. 8.
    V. G. Gorshkov, L. N. Labzovskii, and A. N. Moskalev, Sov. Phys. JETP 49, 209 (1979).ADSGoogle Scholar
  9. 9.
    M. G. Kozlov and L. N. Labzowsky, J. Phys. B: At. Mol. Opt. Phys. 28, 1933 (1995).ADSCrossRefGoogle Scholar
  10. 10.
    A. A. Bondarevskaya, D. V. Chubukov, O. Yu. Andreev, E. A. Mistonova, L. N. Labzowsky, G. Plunien. D. Liesen, and F. Bosch, J. Phys. B 48, 144007 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    J. J. Hudson, D. M. Kara, I. J. Smallman, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, Nature (London, U.K.) 473, 493 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    W. B. Cairncross, D. N. Gresh, M. Grau, K. C. Cossel, T. S. Roussy, Y. Ni. Y. Zhou, J. Ye, and E. A. Cornell, Phys. Rev. Lett. 119, 153001 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    J. Engel, M. J. Ramsey-Musolf, and U. van Kolck, Prog. Part. Nucl. Phys. 71, 21 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    M. Pospelov and A. Ritz, Phys. Rev. D 89, 056006 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    D. V. Chubukov and L. N. Labzowsky, Phys. Rev. A 93, 062503 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    N. B. Baranova, Yu. V. Bogdanov, and B. Ya. Zel’dovich, Sov. Phys. Usp. 20, 1977 (1978).Google Scholar
  17. 17.
    O. P. Sushkov and V. V. Flambaum, Sov. Phys. JETP 48, 608 (1978).ADSGoogle Scholar
  18. 18.
    L. M. Barkov, M. S. Zolotarev, and D. A. Melik-Pashaev, JETP Lett. 48, 144 (1988).ADSGoogle Scholar
  19. 19.
    D. Budker, W. Gawlik, D. Kimball, S. M. Rochester, V. Yashchuk, and A. Weis, Rev. Mod. Phys. 74, 1153 (2002).ADSCrossRefGoogle Scholar
  20. 20.
    L. Bougas, G. E. Katsoprinakis, W. von Klitzing, and T. P. Rakitzis, Phys. Rev. A 89, 052127 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    V. M. Baev, T. Latz, and P. E. Toschek, Appl. Phys. B 69, 171 (1999).ADSCrossRefGoogle Scholar
  22. 22.
    M. Durand, J. Morville, and D. Romanini, Phys. Rev. A 82, 031803 (2010).ADSCrossRefGoogle Scholar
  23. 23.
    D. V. Chubukov and L. N. Labzowsky, Phys. Rev. A 96, 052105 (2017).ADSCrossRefGoogle Scholar
  24. 24.
    D. V. Chubukov, L. V. Skripnikov, and L. N. Labzowsky, Phys. Rev. A 97, 062512 (2018).ADSCrossRefGoogle Scholar
  25. 25.
    D. V. Chubukov, L. V. Skripnikov, L. N. Labzowsky, V.N. Kutuzov, and S. D. Chekhovskoi, Phys. Rev. A 99, 052515 (2019).ADSCrossRefGoogle Scholar
  26. 26.
    D. V. Chubukov, L. V. Skripnikov, V. N. Kutuzov, S. D. Chekhovskoi, and L. N. Labzowsky, Atoms 7, 56 (2019). Scholar
  27. 27.
    K. K. Das, I. D. Petsalakis, H.-P. Liebermann, A. B. Alekseyev, and R. J. Buenker, J. Chem. Phys. 116, 608 (2002).ADSCrossRefGoogle Scholar
  28. 28.
    J. R. Almond, PhD Thesis Imperial College, London, 2017).Google Scholar
  29. 29.
    E. Lindroth, B. W. Lynn, and P. G. H. Sandars, J. Phys. B 22, 559 (1989).ADSCrossRefGoogle Scholar
  30. 30.
    A. N. Petrov, L. V. Skripnikov, A. V. Titov, and V. V. Flambaum, Phys. Rev. A 98, 042502 (2018).ADSCrossRefGoogle Scholar
  31. 31.
    L. Visscher, E. Eliav, and U. Kaldor, J. Chem. Phys. 115, 9720 (2002).ADSCrossRefGoogle Scholar
  32. 32.
    K. G. Dyall, Theor. Chem. Acc. 115, 441 (2006).CrossRefGoogle Scholar
  33. 33.
    K. G. Dyall, Theor. Chem. Acc. 135, 128 (2016).CrossRefGoogle Scholar
  34. 34.
    A. S. P. Gomes, K. G. Dyall, and L. Visscher, Theor. Chem. Acc. 127, 369 (2010).CrossRefGoogle Scholar
  35. 35.
    K. G. Dyall, Theor. Chem. Acc. 131, 1217 (2012).CrossRefGoogle Scholar
  36. 36.
    R. Bast, T. Saue, L. Visscher, and H. J. Aa. Jensen (with contributions from V. Bakken, K. G. Dyall, S. Dubillard, U. Ekstroem, E. Eliav, T. Enevoldsen, E. Fasshauer, T. Fleig, O. Fossgaard, A. S. P. Gomes, T. Helgaker, J. Henriksson, M. Ilias, Ch. R. Jacob, S. Knecht, et al.), DIRAC, A Relativistic Ab Initio Electronic Structure Program, Release DIRAC15.
  37. 37.
    L. V. Skripnikov, J. Chem. Phys. 145, 214301 (2016).ADSCrossRefGoogle Scholar
  38. 38.
    L. V. Skripnikov, A. D. Kudashov, A. N. Petrov, and A. V. Titov, Phys. Rev. A 90, 064501 (2014).ADSCrossRefGoogle Scholar
  39. 39.
    S. Sasmal, H. Pathak, M. K. Nayak, N. Vaval, and S. Pal, J. Chem. Phys. 143, 084119 (2015).ADSCrossRefGoogle Scholar
  40. 40.
    D. Patterson and J. M. Doyle, J. Chem. Phys. 126, 154307 (2007).ADSCrossRefGoogle Scholar
  41. 41.
    N. R. Hutzler, H.-I. Lu, and J. M. Doyle, Chem. Rev. 112, 4803 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • D. V. Chubukov
    • 1
    • 2
    Email author
  • L. V. Skripnikov
    • 1
    • 2
  • L. N. Labzowsky
    • 1
    • 2
  1. 1.Petersburg Nuclear Physics InstituteNational Research Center Kurchatov InstituteGatchinaRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations