JETP Letters

, Volume 110, Issue 5, pp 313–318 | Cite as

Stimulated Emission at a Wavelength of 2.86 μm from In(Sb, As)/In(Ga, Al)As/GaAs Metamorphic Quantum Wells under Optical Pumping

  • V. A. Solov’evEmail author
  • M. Yu. Chernov
  • S. V. Morozov
  • K. E. Kudryavtsev
  • A. A. Sitnikova
  • S. V. Ivanov
Optics and Laser Physics


Metamorphic laser heterostructures In(Sb, As)/In0.81Ga0.19As/In0.75Al0.25As with InSb/InAs/InGaAs composite quantum wells based on submonolayer InSb insertions in a 10-nm InAs layer have been grown by molecular beam epitaxy on GaAs (001) substrates. Stimulated emission at a wavelength of λ ~ 2.86 μm at temperatures of 10–60 K at optical pumping has been demonstrated in such structures without an optical cavity. The threshold pump power density is about 5 kW/cm2 at a temperature of 10 K.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported in part by the Russian Foundation for Basic Research (project no. 18-02-00950) with the use of the equipment of the Shared Usage Center Materials Science and Diagnostics in Leading Technologies supported by the Ministry of Education and Science of the Russian Federation (subsidy no. 14.621.21.0007 id RFME-FI62114X0007).


  1. 1.
    C. J. K. Richardson, L. He, P. Apiratikul, N. P. Siwak, and R. P. Leavitt, Appl. Phys. Lett. 106, 101108 (2015).ADSCrossRefGoogle Scholar
  2. 2.
    P. Apiratikul, L. He, and C. J. K. Richardson, Appl. Phys. Lett. 102, 231101 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    Q. Lu, Q. Zhuang, A. Marshall, M. Kesaria, R. Beanland, and A. Krier, Semicond. Sci. Technol. 29, 075011 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    V. A. Solov’ev, M. Yu. Chernov, B. Ya. Mel’tser, A. N. Semenov, Ya. V. Terent’ev, D. D. Firsov, O. S. Komkov, and S. V. Ivanov, Tech. Phys. Lett. 42, 1038 (2016).ADSCrossRefGoogle Scholar
  5. 5.
    V. A. Solov’ev, O. G. Lyublinskaya, A. N. Semenov, B. Ya. Meltser, D. D. Solnyshkov, Ya. V. Terent’ev, L. A. Prokopova, A. A. Toropov, S. V. Ivanov, and P. S. Kop’ev, Appl. Phys. Lett. 86, 011109 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    M. Yu. Chernov, V. A. Solov’ev, O. S. Komkov, D. D. Firsov, B. Ya. Meltser, M. A. Yagovkina, M. V. Baidakova, P. S. Kop’ev, and S. V. Ivanov, Appl. Phys. Express 10, 121201 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    F. Capotondi, G. Biasiol, D. Ercolani, V. Grillo, E. Carlino, F. Romanato, and L. Sorba, Thin Solid Films 484, 400 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    C. G. van de Walle, Phys. Rev. B 39, 1871 (1989).ADSCrossRefGoogle Scholar
  9. 9.
    A. N. Semenov, O. G. Lyublinskaya, V. A. Solov’ev, B. Ya. Meltser, and S. V. Ivanov, J. Cryst. Growth 301-302, 58 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    O. G. Lyublinskaya, V. A. Solov’ev, A. N. Semenov, B. Ya. Meltser, Ya. V. Terent’ev, L. A. Prokopova, A. A. Toropov, A. A. Sitnikova, O. V. Rykhova, S. V. Ivanov, K. Thonke, and R. Sauer, J. Appl. Phys. 99, 093517 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • V. A. Solov’ev
    • 1
    Email author
  • M. Yu. Chernov
    • 1
  • S. V. Morozov
    • 2
  • K. E. Kudryavtsev
    • 2
  • A. A. Sitnikova
    • 1
  • S. V. Ivanov
    • 1
  1. 1.Ioffe Institute, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute for Physics of MicrostructuresRussian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations