Simulation of the Glass Transition of a Thin Aluminum Melt Layer at Ultrafast Cooling under Isobaric Conditions
- 6 Downloads
Abstract
It is shown that a sharp increase in viscosity, a change in the decay rate of correlations, and the appearance of nonequilibrium and transverse sound in a thin film of aluminum melt during rapid cooling occur in the same temperature range. The analysis is performed using the shear stress autocorrelation functions calculated by the molecular dynamics method. The cooling rate dependences indicate the transition of the metastable state into the amorphous one rather than a phase transition.
Preview
Unable to display preview. Download preview PDF.
Notes
Acknowledgments
We are grateful to the Supercomputer Centers of the Joint Institute for High Temperatures, Russian Academy of Sciences and the Joint Supercomputer Center, Russian Academy of Sciences for the computational time.
Funding
This work was supported by the Russian Science Foundation (project no. 18-19-00734) (G.E. Norman, theoretical analysis of the temperature dependence of the attenuation decrement) and by the Council of the President of the Russian Federation for Support of Leading Scientific Schools (project no. 5922.2018.8) (V.V. Pisarev, E.M. Ki-rova, obtaining autocorrelation functions, calculating the viscosity coefficient, theoretical analysis of the dependences of dispersion and attenuation decrement).
References
- 1.N. V. Priezjev and M. A. Makeev, J. Non-Cryst. Solids 495, 95 (2018).CrossRefGoogle Scholar
- 2.Y. Waseda and H. S. Chen, Phys. Status Solidi A 49, 387 (1978).ADSCrossRefGoogle Scholar
- 3.Y. Qi, T. Cagin, Y. Kimura, and W. A. Goddard, Phys. Rev. B 59, 3527 (1999).ADSCrossRefGoogle Scholar
- 4.A. Takeuchi and A. Inoue, Mater. Sci. Eng. 304, 446 (2001).CrossRefGoogle Scholar
- 5.L. N. Kolotova, G. E. Norman, and V. V. Pisarev, J. Non-Cryst. Solids 429, 98 (2015).ADSCrossRefGoogle Scholar
- 6.A. I. Fedorchenko, J. Cryst. Growth 475, 362 (2017).ADSCrossRefGoogle Scholar
- 7.V. A. Polukhin and N. A. Vatolin, Rasplavy 2, 194 (2018).Google Scholar
- 8.V. A. Polukhin and N. A. Vatolin, Russ. Chem. Rev. 84, 498 (2015).ADSCrossRefGoogle Scholar
- 9.J. W. P. Schmelzer and T. V. Tropin, J. Non-Cryst. Solids 407, 170 (2015).ADSCrossRefGoogle Scholar
- 10.J. W. P. Schmelzer, J. Chem. Phys. 074512, 136 (2012).Google Scholar
- 11.T. V. Tropin, J. W. P. Schmelzer, and C. Schick, J. Non-Cryst. Solids 357, 129 (2011).Google Scholar
- 12.M. G. Vasin, S. G. Menshikova, and M. D. Ivshin, Phys. A (Amsterdam, Neth.) 449, 64 (2016).ADSCrossRefGoogle Scholar
- 13.R. E. Ryltsev, B. A. Klumov, N. M. Chtchelkatchev, and K. Y. Shunyaev, J. Chem. Phys. 149, 164502 (2018).ADSCrossRefGoogle Scholar
- 14.D. S. Sanditov and M. I. Ojovan, Phys. Usp. 62, 111 (2019).ADSCrossRefGoogle Scholar
- 15.H. Jónsson and H. C. Andersen, Phys. Rev. Lett. 60, 2295 (1988).ADSCrossRefGoogle Scholar
- 16.C. A. Angell, Science (Washington, DC, U. S.) 267, 1924 (1995).ADSCrossRefGoogle Scholar
- 17.Y. D. Fomin, V. V. Brazhkin, and V. N. Ryzhov, Phys. Rev. E 86, 011503 (2012).ADSCrossRefGoogle Scholar
- 18.Y. D. Fomin, V. N. Ryzhov, and V. V. Brazhkin, J. Phys.: Condens. Matter. 25, 285104 (2013).Google Scholar
- 19.R. E. Ryltsev, N. M. Chtchelkatchev, and V. N. Ryzhov, Phys. Rev. Lett. 110, 025701 (2013).ADSCrossRefGoogle Scholar
- 20.P. Badrinarayanan, W. Zheng, Q. Li, and S. L. Simon, J. Non-Cryst. Solids 353, 2603 (2007).ADSCrossRefGoogle Scholar
- 21.V. Wessels, A. K. Gangopadhyay, and K. K. Sahu, Phys. Rev. B 83, 94116 (2011).ADSCrossRefGoogle Scholar
- 22.M. D. Halls, D. Yoshidome, and T. J. Mustard, J. Imaging Soc. Jpn. 54, 561 (2015).Google Scholar
- 23.P. N. Patrone, A. Deinstfrey, A. R. Browning, S. Tucker, and S. Christensen, Polymer 87, 246 (2016).CrossRefGoogle Scholar
- 24.C. Balbuena, C. Brito, and D. A. Stariolo, J. Phys.: Condens. Matter 26, 155104 (2014).Google Scholar
- 25.M. S. Daw and M. Baskes, Phys. Rev. B 29, 6443 (1984).ADSCrossRefGoogle Scholar
- 26.X. Liu, W. Xu, S. M. Foiles, and J. B. Adams, Appl. Phys. Lett. 72, 1578 (1998).ADSCrossRefGoogle Scholar
- 27.L. Zhong, J. Wang, H. Sheng, and S. Mao, Nature (London, U.K.) 512, 177 (2014).ADSCrossRefGoogle Scholar
- 28.A. P. Baikov, V. A. Ivanchenko, V. I. Motorin, S. L. Musher, and A. F. Shestak, Phys. Lett. A 113, S 38 (1985).ADSCrossRefGoogle Scholar
- 29.D. V. Minakov and P. R. Levashov, Phys. Rev. B 92, 224102 (2015).ADSCrossRefGoogle Scholar
- 30.G. E. Norman and V. V. Stegailov, Math. Models Comput. Simul. 5, 305 (2013).MathSciNetCrossRefGoogle Scholar
- 31.A. Y. Kuksin, I. V. Morozov, G. E. Norman, V. V. Stegailov, and I. V. Valuev, Mol. Simul. 31, 1005 (2005).CrossRefGoogle Scholar
- 32.V. V. Pisarev, Russ. J. Phys. Chem. A 88, 1382 (2014).CrossRefGoogle Scholar
- 33.V. I. Ladyanov, A. L. Beltyukov, S. G. Menshikova, and A. U. Korepanov, Phys. Chem. Liq. 52, 46 (2014).CrossRefGoogle Scholar
- 34.L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics (Nauka, Moscow, 1982; Pergamon, New York, 1988).Google Scholar
- 35.K. Trachenko and V. V. Brazhkin, J. Phys.: Condens. Matter 21, 425104 (2009).ADSGoogle Scholar
- 36.M. V. Vol’kenshtein and O. B. Ptitsyn, Zh. Tekh. Fiz. 26, 2204 (1956).Google Scholar