JETP Letters

, Volume 110, Issue 5, pp 364–369 | Cite as

Generation of Dark Multisoliton Complexes in a Magnonic Ring Resonator with Dispersion Management and Competing Nonlinear Spin-Wave Interactions

  • A. S. BirEmail author
  • S. V. GrishinEmail author
Condensed Matter


Multisoliton complexes have been generated in an active ring resonator with an L-shaped magnonic microwaveguide and a saturated amplifier. It has been shown that an irregular microwaveguide simultaneously supports both the propagation of magnetostatic spin waves with different (normal and anomalous) dispersion and competition between three- and four-wave spin-wave interactions. Generated multisoliton complexes consist of quasiperiodic sequences of two dark parametric pulses containing “soliton trains” consisting of three dark ultrashort four-wave envelope solitons. It has been found that quasiperiodic sequences of multisoliton complexes generated by the active ring resonator with a regular magnonic microwaveguide consist of one dark parametric pulse, which also contains three dark four-wave solitons. However, in contrast to the preceding case, four-wave solitons, having a longer duration, do not form soliton trains inside a dark parametric pulse.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Russian Science Foundation (project no. 19-79-20121).


  1. 1.
    Dissipative Solitons, Ed. by N. N. Akhmediev and A. Ankiewicz (Springer, Berlin, 2005).CrossRefGoogle Scholar
  2. 2.
    M. Stratmann, T. Pagel, and F. Mitschke, Phys. Rev. Lett. 95, 143902 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    P. Grelu and N. Akhmediev, Nat. Photon. 6, 84 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    A. S. Desyatnikov and Y. S. Kivshar, Phys. Rev. Lett. 88, 053901 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    Y. V. Kartashov, L. C. Crasovan, D. Mihalache, and L. Torner, Phys. Rev. Lett. 89, 273902 (2002).CrossRefGoogle Scholar
  6. 6.
    D. Yan, J. J. Chang, C. Hamner, P. G. Kevrekidis, P. Engels, V. Achilleos, D. J. Frantzeskakis, R. Carretero-Gonzalez, and P. Schmelcher, Phys. Rev. A 84, 053630 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    B. A. Kalinikos, N. G. Kovshikov, and C. E. Patton, JETP Lett. 68, 243 (1998).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    B. A. Kalinikos, N. G. Kovshikov, M. P. Kostylev, and H. Benner, JETP Lett. 76, 253 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    S. O. Demokritov, A. A. Serga, V. E. Demidov, B. Hillebrands, M. P. Kostylev, and B. A. Kalinikos, Nature (London, U.K.) 26, 159 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    A. B. Ustinov, B. A. Kalinikos, V. E. Demidov, and S. O. Demokritov, Phys. Rev. B. 80, 052405 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    S. V. Grishin, B. S. Dmitriev, O. I. Moskalenko, V. N. Skorokhodov, and Yu. P. Sharaevskii, Phys. Rev. E 98, 022209 (2018).ADSCrossRefGoogle Scholar
  12. 12.
    M. Wu, Solid State Phys. 62, 163 (2010).CrossRefGoogle Scholar
  13. 13.
    A. V. Sadovnikov, C. S. Davies, V. V. Kruglyak, D. V. Romanenko, S. V. Grishin, E. N. Beginin, Y. P. Sharaevskii, and S. A. Nikitov, Phys. Rev. B 96, 060401(R) (2017).Google Scholar
  14. 14.
    R. W. Damon and J. R. Eshbach, J. Appl. Phys. 19, 308 (1961).Google Scholar
  15. 15.
    B. A. Kalinikos and A. N. Slavin, J. Phys. C: Solid State Phys. 19, 7013 (1986).ADSCrossRefGoogle Scholar
  16. 16.
    A. V. Sadovnikov, C. S. Davies, S. V. Grishin, V. V. Kruglyak, D. V. Romanenko, Y. P. Sharaevskii, and S. A. Nikitov, Appl. Phys. Lett. 106, 192406 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    A. K. Zvezdin and A. F. Popkov, Sov. Phys. JETP 57, 350 (1983).Google Scholar
  18. 18.
    Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, San Diego, CA, 2003).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.National Research Saratov State UniversitySaratovRussia

Personalised recommendations