Advertisement

JETP Letters

, Volume 110, Issue 5, pp 336–341 | Cite as

Collisionless Plasma Processes at Magnetospheric Boundaries: Role of Strong Nonlinear Wave Interactions

  • S. SavinEmail author
  • E. Amata
  • L. Zelenyi
  • C. Wang
  • H. Li
  • B. Tang
  • G. Pallocchia
  • J. Safrankova
  • Z. Nemecek
  • A. S. Sharma
  • F. Marcucci
  • L. Kozak
  • J. L. Rauch
  • V. Budaev
  • J. Blecki
  • L. Legen
  • M. Nozdrachev
Plasma, Hydro- and Gas Dynamics
  • 18 Downloads

Abstract

The sunward Poynting flux throughout the magnetosheath and foreshock (directly measured by INERBALL-1, CLUSTER-4, and DOUBLE STAR TC1) and its correlation and bi-correlation with the dynamic pressure of the solar plasma flow have been analyzed. It has been demonstrated for the first time that perturbations caused by resonances in the magnetospheric boundary layers propagate upstream towards the bow shock as the short impulses of the sunward Poynting flux, which excite the strongest three-wave resonances. They are initiated in the foreshock and regulate the bow shock surface oscillations. Another interaction zone near the magnetopause assists plasma flow extra deflection and acceleration around the magnetopause. At the outer boundary of stagnant cusp the turbulent barrier can separate the flowing and stagnant plasmas namely by the three-wave cascades. Therefore, both experiment and magnetohydrodynamic simulation demonstrate the leading role of the discovered waves and nonlinear processes in the collisionless interaction of the plasma flow and magnetic barrier.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We thank Valery Smirmov for providing SKA-1 ion data used in the calculations of the dynamics pressure on I1 and Paul Song for GDCF model. The spacecraft and OMNI data were downloaded from the CDAW Website. The spectral and correlation analysis used the SWAN software, made available by LPCEE staff. We regret that Ermanno Amata participated only in the beginning of the paper writing, he also provided DS and C4 ion data. We thank Prof. Mark Koepke and his team for validating of our bi-spectral analysis. ISSI supported one meeting of Savin/Wang Team on the paper topic.

References

  1. 1.
    S. P. Savin, L. M. Zelenyi, E. Amata, J. Buechner, J. Blecki, S. I. Klimov, B. Nikutowski, J. L. Rauch, S. A. Romanov, A. A. Skalsky, V. N. Smirnov, P. Song, and K. Stasiewicz, JETP Lett. 79, 452 (2004).CrossRefGoogle Scholar
  2. 2.
    S. Savin, A. Skalsky, L. Zelenyi, et al., Surv. Geophys. 26, 95 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    S. Savin, E. Amata, V. Budaev, L. Zelenyi, E. A. Kronberg, J. Buechner, J. Safrankova, Z. Nemecek, J. Blecki, L. Kozak, S. Klimov, A. Skalsky, and L. Lezhen, JETP Lett. 99, 16 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    A. S. Leonovich, V. A. Mazur, and D. A. Kozlov, in Low Frequency Waves in Space Plasmas, Vol. 216 of Geophysical Monograph (Am. Geophys. Union, Wiley, New York, 2016), p. 151.Google Scholar
  5. 5.
    Y. Q. Hu, X. C. Guo, and C. Wang, J. Geophys. Res. 112, A07215 (2007). https://doi.org/10.1029/2006JA012145 ADSGoogle Scholar
  6. 6.
    V. M. Nakariakov, V. Pilipenko, and B. Heilig, Space Sci. Rev. 200, 75 (2016). https://doi.org/10.1007/s11214-015-0233-0 ADSCrossRefGoogle Scholar
  7. 7.
    F. Plaschke, H. Hietala, V. Angelopoulos, and R. Nakamura, J. Geophys. Res. 121, 3240 (2016). https://doi.org/10.1002/2016JA022534 CrossRefGoogle Scholar
  8. 8.
    S. Savin, E. Amata, M. Andre, et al., Nonlin. Processes Geophys. 13, 377 (2006). https://doi.org/10.5194/npg-13-377-2006 ADSCrossRefGoogle Scholar
  9. 9.
    G. Pallocchia, J. Geophys. Res. 118, 1125 (2013). https://doi.org/10.1029/2012JA017851 CrossRefGoogle Scholar
  10. 10.
    G. Pallocchia, A. A. Samsonov, and M. B. Bavassano, Ann. Geophys. 28, 1141 (2010). https://doi.org/10.5194/angeo-28-1141-2010 ADSCrossRefGoogle Scholar
  11. 11.
    S. Savin, L. Zelenyi, E. Amata, et al., Planet Space Sci. 53, 133 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    P. Song, C. T. Russell, and M. F. Thomsen, J. Geophys. Res. 97, 8295 (1992).ADSCrossRefGoogle Scholar
  13. 13.
    K. Stasiewicz and C. Z. Cheng, Ann. Geophys. 7, 4379 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    F. Plaschke, H. Hietala, M. Archer, X. Blanco-Cano, P. Kajdiyc, T. Karlsson, S. Hee Lee, N. Omidi, M. Palmroth, V. Roytershteyn, D. Schmid, V. Sergeev, and D. Sibeck, Space Sci. Rev. 214, 81 (2018).ADSCrossRefGoogle Scholar
  15. 15.
    P. Song, C. T. Russell, T. I. Gombosi, J. R. Spreiter, S. S. Stahara, and X. X. Zhang, J. Geophys. Res. 104, 345 (1999).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • S. Savin
    • 1
    Email author
  • E. Amata
    • 2
  • L. Zelenyi
    • 3
    • 10
  • C. Wang
    • 3
  • H. Li
    • 3
  • B. Tang
    • 3
  • G. Pallocchia
    • 2
  • J. Safrankova
    • 4
  • Z. Nemecek
    • 4
  • A. S. Sharma
    • 5
  • F. Marcucci
    • 2
  • L. Kozak
    • 6
  • J. L. Rauch
    • 7
  • V. Budaev
    • 1
    • 8
  • J. Blecki
    • 9
  • L. Legen
    • 1
  • M. Nozdrachev
    • 1
  1. 1.Space Research InstituteRussian Academy of SciencesMoscowRussia
  2. 2.INAF-Istituto di Astrofisica e Planetologia SpazialiRomaItaly
  3. 3.National Space Science CenterChinese Academy of SciencesBeijingPeople’s Republic of China
  4. 4.Charles UniversityPragueCzech Republic
  5. 5.University of MarylandCollege ParkUSA
  6. 6.Kyiv Taras Shevchenko UniversityKyivUkraine
  7. 7.Laboratory of Physics and Chemistry of the Environment and SpaceOrleansFrance
  8. 8.National Research Center Kurchatov InstituteMoscowRussia
  9. 9.Space Research CenterWarsawPoland
  10. 10.Moscow Physical–Technical InstituteMoscowRussia

Personalised recommendations