JETP Letters

, Volume 110, Issue 4, pp 290–295 | Cite as

Fermion Condensation, T-Linear Resistivity, and Planckian Limit

  • V. R. ShaginyanEmail author
  • M. Ya. Amusia
  • A. Z. Msezane
  • V. A. Stephanovich
  • G. S. Japaridze
  • S. A. Artamonov
Condensed Matter


We explain recent challenging experimental observations of universal scattering rate related to the linear-temperature resistivity exhibited by a large corps of both strongly correlated Fermi systems and conventional metals. We show that the observed scattering rate in strongly correlated Fermi systems like heavy fermion metals and high-Tc superconductors stems from phonon contribution that induce the linear temperature dependence of a resistivity. The above phonons are formed by the presence of flat band, resulting from the topological fermion condensation quantum phase transition. We emphasize that so-called Planckian limit, widely used to explain the above universal scattering rate, may occur accidentally as in conventional metals its experimental manifestations (e.g., scattering rate at room and higher temperatures) are indistinguishable from those generated by the well-know phonons being the classic lattice excitations. Our results are in good agreement with experimental data and show convincingly that the topological fermion condensation quantum phase transition can be viewed as the universal agent explaining the very unusual physics of strongly correlated Fermi systems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank V. A. Khodel for stimulating discussions.


This work was partly supported by Office of Energy Research and Office of Basic Energy Sciences, Division of Chemical Sciences, United States Department of Energy.


  1. 1.
    V.A. Khodel and V.R. Shaginyan, JETP Lett. 51, 553 (1990).ADSGoogle Scholar
  2. 2.
    G. E. Volovik, JETP Lett. 53, 222 (1991).ADSGoogle Scholar
  3. 3.
    Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature 556, 43 (2018).ADSCrossRefGoogle Scholar
  4. 4.
    V.A. Khodel, J.W. Clark, and V.R. Shaginyan, Solid St. Comm. 96, 353 (1995).ADSCrossRefGoogle Scholar
  5. 5.
    V.R. Shaginyan, M.Ya. Amusia, A. Z. Msezane, and K. G. Popov, Phys. Rep. 492, 31 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    M.Yu. Melnikov, A. A. Shashkin, V.T. Dolgopolov, S.-H. Huang, C.W. Liu, and S. V. Kravchenko, Sci. Rep. 7, 14539 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    Y. Liu, H.P. Nair, J. P. Ruf, D.G. Schlom, and K.M. Shen, Phys. Rev. B 98, 041110(R) (2018).ADSCrossRefGoogle Scholar
  8. 8.
    A. A. Shashkin and S. V. Kravchenko, Appl. Sci. 9, 1169 (2019).CrossRefGoogle Scholar
  9. 9.
    V. A. Khodel, V.R. Shaginyan, and V. V. Khodel, Phys. Rep. 249, 1 (1994).ADSCrossRefGoogle Scholar
  10. 10.
    M.Ya. Amusia, K. G. Popov, V.R. Shaginyan, and V. A. Stephanovich, Theory of Heavy-Fermion Compounds, Springer Series in Solid-State Sciences 182, 1 (2015), Springer, Heidelberg, N.Y., Dordrecht, London.CrossRefGoogle Scholar
  11. 11.
    V.R. Shaginyan, K.G. Popov, and V.A. Khodel, Phys. Rev. B 88, 115103 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    J. A. N. Bruin, H. Sakai, R. S. Perry, and A.P. Mackenzie, Science 339, 880 (2013).CrossRefGoogle Scholar
  13. 13.
    A. Legros, S. Benhabib, W. Tabis et al. (Collaboration), Nat. Phys. 15, 142 (2019).CrossRefGoogle Scholar
  14. 14.
    Y. Cao, D. Chowdhury, D. Rodan-Legrain, O. Rubies-Bigordá, K. Watanabe, T. Taniguchi, T. Senthil, and P. Jarillo-Herrero, arXiv:1901.03710.Google Scholar
  15. 15.
    Y. Nakajima, T. Metz, C. Eckberg et al. (Collaboration), arXiv:1902.01034.Google Scholar
  16. 16.
    A.A. Patel and S. Sachdev, arXiv:1906.03265.Google Scholar
  17. 17.
    V.A. Khodel, J.W. Clark, V.R. Shaginyan, and M.V. Zverev, JETP Lett. 92, 532 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    V.R. Shaginyan, A. Z. Msezane, K.G. Popov, G. S. Japaridze, and V.A. Khodel, Europhys. Lett. 106, 37001 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    J. Paglione, M.A. Tanatar, D.G. Hawthorn, E. Boaknin, R.W. Hill, F. Ronning, M. Sutherland, L. Taillefer, C. Petrovic, and P. C. Canfield, Phys. Rev. Lett. 91, 246405 (2003).ADSCrossRefGoogle Scholar
  20. 20.
    V. R. Shaginyan, V.A. Stephanovich, A.Z. Msezane, P. Schuck, J.W. Clark, M.Ya. Amusia, G. S. Japaridze, K.G. Popov, and E.V. Kirichenko, J. Low Temp. Phys. 189, 410 (2017).ADSCrossRefGoogle Scholar
  21. 21.
    N. R. Lee-Hone, J. S. Dodge, and D.M. Broun, Phys. Rev. B 96, 024501 (2017).ADSCrossRefGoogle Scholar
  22. 22.
    C.M. Varma, P.B. Littlewood, S. Schmitt-Rink, E. Abrahams, and A. E. Ruckenstein, Phys. Rev. Lett. 63, 1996 (1989).ADSCrossRefGoogle Scholar
  23. 23.
    M. E. Simon and C. M. Varma, Phys. Rev. Lett. 89, 247003 (2002).ADSCrossRefGoogle Scholar
  24. 24.
    P. Phillips, Phil. Trans. R. Soc. A 369, 1572 (2011).ADSCrossRefGoogle Scholar
  25. 25.
    P. Phillips, Phil. Trans. R. Soc. A 369, 1574 (2011).ADSCrossRefGoogle Scholar
  26. 26.
    V.R. Shaginyan, A. Z. Msezane, K.G. Popov, J. W. Clark, M. V. Zverev, and V. A. Khodel, Phys. Rev. B 86, 085147 (2012).ADSCrossRefGoogle Scholar
  27. 27.
    A.A. Abrikosov, L.P. Gor’kov, and I.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, Prentice-Hall, London (1963).zbMATHGoogle Scholar
  28. 28.
    P. Aynajian, E. Neto, A. Gyenis, R.E. Baumbach, J.D. Thompson, Z. Fisk, E.D. Bauer, and A. Yazdani, Nature 486, 201 (2012).ADSCrossRefGoogle Scholar
  29. 29.
    D.C. Peets, D.G. Hawthorn, K.M. Shen, Y.-J. Kim, D. S. Ellis, H. Zhang, S. Komiya, Y. Ando, G. A. Sawatzky, R. Liang, D.A. Bonn, and W.N. Hardy, Phys. Rev. Lett. 103, 087402 (2009).ADSCrossRefGoogle Scholar
  30. 30.
    M. M. J. French, J.G. Analytis, A. Carrington, L. Balicas, and N.E. Hussey, New J. Phys. 11, 055057 (2009).ADSCrossRefGoogle Scholar
  31. 31.
    J. W. Alldredge, J. Lee, K. McElroy, M. Wang, K. Fujita, Y. Kohsaka, C. Taylor, H. Eisaki, S. Uchida, P. J. Hirschfeld, and J. C. Davis, Nature Phys. 4, 319 (2008).CrossRefGoogle Scholar
  32. 32.
    S. Carr, S. Fang, P. Jarillo-Herrero, and E. Kaxiras, Phys. Rev. B 98, 085144 (2018).ADSCrossRefGoogle Scholar
  33. 33.
    V.R. Shaginyan, A. Z. Msezane, K.G. Popov, G. S. Japaridze, and V.A. Khodel, Phys. Rev. B 87, 245122 (2013).ADSCrossRefGoogle Scholar
  34. 34.
    V.R. Shaginyan, A. Z. Msezane, G. S. Japaridze, V. A. Stephanovich, and Y. S. Leevik, JETP Lett. 108, 335 (2018).ADSCrossRefGoogle Scholar
  35. 35.
    V. R. Shaginyan, A. Z. Msezane, V.A. Stephanovich, G. S. Japaridze, and E.V. Kirichenko, Phys. Scr. 94, 065801 (2019).ADSCrossRefGoogle Scholar
  36. 36.
    V.R. Shaginyan, JETP Lett. 81, 222 (2005).ADSCrossRefGoogle Scholar
  37. 37.
    A. W. Rost, S.A. Grigera, J.A.N. Bruin, R. S. Perry, D. Tian, S. Raghu, S.A. Kivelson, and A.P. Mackenzie, Proc. Natl. Acad. Sci. 108, 16549 (2011).ADSCrossRefGoogle Scholar
  38. 38.
    A. W. Rost, R. S. Perry, J.-F. Mercure, A.P. Mackenzie, and S.A. Grigera, Science 325, 1360 (2009).ADSCrossRefGoogle Scholar
  39. 39.
    A.P. Mackenzie, J. A. N. Bruin, R. A. Borzi, A. W. Rost, and S.A. Grigera, Physica C 481, 207 (2012).ADSCrossRefGoogle Scholar
  40. 40.
    T. Hu, Yi. Liu, H. Xiao, G. Mu, and Yi-F. Yang, Sci. Rep. 7, Article number: 9469 (2017).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • V. R. Shaginyan
    • 1
    • 2
    Email author
  • M. Ya. Amusia
    • 3
    • 4
  • A. Z. Msezane
    • 2
  • V. A. Stephanovich
    • 5
  • G. S. Japaridze
    • 2
  • S. A. Artamonov
    • 1
  1. 1.Petersburg Nuclear Physics Institute of NRC “Kurchatov Institute”GatchinaRussia
  2. 2.Clark Atlanta UniversityAtlantaUSA
  3. 3.Racah Institute of PhysicsHebrew UniversityJerusalemIsrael
  4. 4.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  5. 5.Institute of PhysicsOpole UniversityOpolePoland

Personalised recommendations