JETP Letters

, Volume 110, Issue 3, pp 223–230 | Cite as

Effect of a Substrate on the Magnetoelectric Effect in Rare-Earth-Doped Bismuth Iron Garnet

  • S. S. AplesninEmail author
  • A. N. Masyugin
  • M. N. Sitnikov
  • T. Ishibashi
Condensed Matter


The mechanism of relaxation of the electric polarization in thin films of rare-earth-doped bismuth iron garnet on glass and gallium gadolinium garnet substrates is determined in magnetic fields of 0 and 12 kOe in the temperature range of 80–380 K. The change in the sign of the residual electric polarization after switching off the electric field and the magnetic-field-induced shift of the hysteresis loop in the applied magnetic field are found. Linear and quadratic magnetoelectric effects with the tensor components depending on the substrate type are observed. The linear magnetoelectric effect is related to the spin–orbit coupling of electrons at the film–substrate interface, whereas the quadratic one is determined by the exchange–striction mechanism.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported jointly by the Russian Foundation for Basic Research, the Government of the Krasnoyarsk Territory, and the Krasnoyarsk Science Foundation (project no. 18-42-240001 “Temperature-Induced Reversal of the Sign of Magnetoelectric Tensor Components in Neodymium-Doped Bismuth Iron Garnet”), as well as in part by the Russian Foundation for Basic Research (project nos. 18-32-00079_mol_a and 18-52-00009_bel_a) and by the Russian Ministry of Science and Higher Education (state contract no. 3.5743.2017/6.7).


  1. 1.
    T. Ishibashi, A. Mizusama, M. Nagai, S. Shimizu, K. Sato, N. Togashi, T. Mogi, M. Houchido, H. Sano, and K. Kuriyama, J. Appl. Phys. 97, 013516, (2005).ADSCrossRefGoogle Scholar
  2. 2.
    E. Popova, L. Magdenko, H. Niedoba, M. Deb, B. Dagens, B. Berini, M. Vanwolleghem, C. Vilar, F. Gen-dron, A. Fouchet, J. Scola, Y. Dumont, M. Guyot, and N. Keller, J. Appl. Phys. 112, 093910, (2012).ADSCrossRefGoogle Scholar
  3. 3.
    N. E. Khokhlov, A. E. Khramova, E. P. Nikolaeva, T. B. Kosykh, A. V. Nikolaev, A. K. Zvezdin, A. P. Py-atakov, and V. I. Belotelov, Sci. Rep. 7, 264, (2017).ADSCrossRefGoogle Scholar
  4. 4.
    E. Kita, S. Takano, A. Tasaki, K. Siratori, K. Kohn, and S. Kimura, J. Appl. Phys. 64, 5659, (1988).ADSCrossRefGoogle Scholar
  5. 5.
    M. Mercier, Int. J. Magn. 6, 77, (1974).Google Scholar
  6. 6.
    D. P. Kulikova, A. P. Pyatakov, E. P. Nikolaeva, A. S. Sergeev, T. B. Kosykh, Z. A. Pyatakova, A. V. Nikolaev, and A. K. Zvezdin, JETP Lett. 104, 197, (2016).ADSCrossRefGoogle Scholar
  7. 7.
    D. P. Kulikova, T. T. Gareev, E. P. Nikolaeva, T. B. Kosykh, A. V. Nikolaev, Z. A. Pyatakova, A. K. Zvezdin, and A. P. Pyatakov, Phys. Status Solidi RRL 12, 1800066, (2018).CrossRefGoogle Scholar
  8. 8.
    A. S. Logginov, G. A. Meshkov, A. V. Nikolaev, and A. P. Pyatakov, JETP Lett. 86, 115, (2007).ADSCrossRefGoogle Scholar
  9. 9.
    A. P. Pyatakov, D. A. Sechin, A. S. Sergeev, A. V. Nikolaev, E. P. Nikolaeva, A. S. Logginov, and A. K. Zvezdin, Eur. Phys. Lett. 93, 17001, (2011).ADSCrossRefGoogle Scholar
  10. 10.
    A. S. Sergeev, J. Phys.: Conf. Ser. 929, 012085, (2017).Google Scholar
  11. 11.
    A. F. Kabychenkov, F. V. Lisovskii, and E. G. Mansvetova, JETP Lett. 97, 265, (2013).ADSCrossRefGoogle Scholar
  12. 12.
    G. V. Arzamastseva, A. M. Balbashov, F. V. Lisovskii, E. G. Mansvetova, A. G. Temiryazev, and M. P. Temiryazeva, J. Exp. Theor. Phys. 120, 687, (2015).ADSCrossRefGoogle Scholar
  13. 13.
    B. B. Krichevtsov, V. V. Pavlov, and R. V. Pisarev, JETP Lett. 49, 535, (1989).ADSGoogle Scholar
  14. 14.
    E. Popova, A. Shengelaya, D. Daraselia, D. Japaridze, S. Cherifi-Hertel, L. Bocher, A. Gloter, O. Stephan, Y. Dumont, and N. Keller, Appl. Phys. Lett. 110, 142404, (2017).ADSCrossRefGoogle Scholar
  15. 15.
    T. Oikawa, S. Suzuki, and K. Nakao, J. Phys. Soc. Jpn. 74, 401, (2005).ADSCrossRefGoogle Scholar
  16. 16.
    S. Wittekoek, T. J. A. Popma, J. M. Robertson, and P. F. Bongers, Phys. Rev. B 12, 2777, (1975).ADSCrossRefGoogle Scholar
  17. 17.
    Y. Hosoe, R. Suzuki, K. Takanashi, H. Yasuoka, S. Chikazumi, and Y. Sugita, J. Phys. Soc. Jpn. 55, 731, (1986).ADSCrossRefGoogle Scholar
  18. 18.
    M. M. Parish, Nature (London, U.K.) 426, 162, (2003).ADSCrossRefGoogle Scholar
  19. 19.
    A. M. Essin, A. M. Turner, J. E. Moore, and D. Vanderbilt, Phys. Rev. B 81, 205104, (2010).ADSCrossRefGoogle Scholar
  20. 20.
    A. Malashevich, I. Souza, S. Coh, and D. Vanderbilt, New J. Phys. 12, 053032, (2010).ADSCrossRefGoogle Scholar
  21. 21.
    M. Sasaki, G. Lou, Q. Liu, M. Ninomiya, T. Kato, S. Iwata, and T. Ishibashi, Jpn. J. Appl. Phys. 55, 055501, (2016).ADSCrossRefGoogle Scholar
  22. 22.
    S. S. Aplesnin, A. N. Masyugin, M. N. Sitnicov, U. I. Rybina, and T. Ishibashi, J. Magn. Magn. Mater. 464, 44, (2018).ADSCrossRefGoogle Scholar
  23. 23.
    T. Ishibashia, A. Mizusawa, M. Nagai, S. Shimizu, and K. Satoet, J. Appl. Phys. 97, 013516, (2005).ADSCrossRefGoogle Scholar
  24. 24.
    A. K. Zvezdin and A. P. Pyatakov, Phys. Usp. 52, 845, (2009).ADSCrossRefGoogle Scholar
  25. 25.
    J. van den Brink and D. I. Khomskii, J. Phys.: Condens. Matter 20, 434217, (2008).Google Scholar
  26. 26.
    I. A. Sergienko and E. Dagotto, Phys. Rev. B 73, 094434, (2006).ADSCrossRefGoogle Scholar
  27. 27.
    M. A. Essin, A. M. Turner, J. E. Moore, and D. Vanderbilt, Phys. Rev. B 81, 205104, (2010).ADSCrossRefGoogle Scholar
  28. 28.
    A. Scaramucci, E. Bousquet, M. Fechner, M. Mostovoy, and N. A. Spaldin, Phys. Rev. Lett. 109, 19, (2012).CrossRefGoogle Scholar
  29. 29.
    V. V. Shvartsman, P. Borisov, W. Kleemann, S. Kamba, and T. Katsufuji, Phys. Rev. B 81, 064426, (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • S. S. Aplesnin
    • 1
    • 2
    Email author
  • A. N. Masyugin
    • 1
  • M. N. Sitnikov
    • 1
  • T. Ishibashi
    • 3
  1. 1.Reshetnev Siberian State University of Science and TechnologyKrasnoyarskRussia
  2. 2.Kirensky Institute of Physics, Federal Research Center KSC, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  3. 3.Department of Materials Science and TechnologyNagaoka University of TechnologyNagaoka, NiigataJapan

Personalised recommendations