Effect of a Substrate on the Magnetoelectric Effect in Rare-Earth-Doped Bismuth Iron Garnet
- 9 Downloads
Abstract
The mechanism of relaxation of the electric polarization in thin films of rare-earth-doped bismuth iron garnet on glass and gallium gadolinium garnet substrates is determined in magnetic fields of 0 and 12 kOe in the temperature range of 80–380 K. The change in the sign of the residual electric polarization after switching off the electric field and the magnetic-field-induced shift of the hysteresis loop in the applied magnetic field are found. Linear and quadratic magnetoelectric effects with the tensor components depending on the substrate type are observed. The linear magnetoelectric effect is related to the spin–orbit coupling of electrons at the film–substrate interface, whereas the quadratic one is determined by the exchange–striction mechanism.
Preview
Unable to display preview. Download preview PDF.
Notes
Funding
This work was supported jointly by the Russian Foundation for Basic Research, the Government of the Krasnoyarsk Territory, and the Krasnoyarsk Science Foundation (project no. 18-42-240001 “Temperature-Induced Reversal of the Sign of Magnetoelectric Tensor Components in Neodymium-Doped Bismuth Iron Garnet”), as well as in part by the Russian Foundation for Basic Research (project nos. 18-32-00079_mol_a and 18-52-00009_bel_a) and by the Russian Ministry of Science and Higher Education (state contract no. 3.5743.2017/6.7).
References
- 1.T. Ishibashi, A. Mizusama, M. Nagai, S. Shimizu, K. Sato, N. Togashi, T. Mogi, M. Houchido, H. Sano, and K. Kuriyama, J. Appl. Phys. 97, 013516, (2005).ADSCrossRefGoogle Scholar
- 2.E. Popova, L. Magdenko, H. Niedoba, M. Deb, B. Dagens, B. Berini, M. Vanwolleghem, C. Vilar, F. Gen-dron, A. Fouchet, J. Scola, Y. Dumont, M. Guyot, and N. Keller, J. Appl. Phys. 112, 093910, (2012).ADSCrossRefGoogle Scholar
- 3.N. E. Khokhlov, A. E. Khramova, E. P. Nikolaeva, T. B. Kosykh, A. V. Nikolaev, A. K. Zvezdin, A. P. Py-atakov, and V. I. Belotelov, Sci. Rep. 7, 264, (2017).ADSCrossRefGoogle Scholar
- 4.E. Kita, S. Takano, A. Tasaki, K. Siratori, K. Kohn, and S. Kimura, J. Appl. Phys. 64, 5659, (1988).ADSCrossRefGoogle Scholar
- 5.M. Mercier, Int. J. Magn. 6, 77, (1974).Google Scholar
- 6.D. P. Kulikova, A. P. Pyatakov, E. P. Nikolaeva, A. S. Sergeev, T. B. Kosykh, Z. A. Pyatakova, A. V. Nikolaev, and A. K. Zvezdin, JETP Lett. 104, 197, (2016).ADSCrossRefGoogle Scholar
- 7.D. P. Kulikova, T. T. Gareev, E. P. Nikolaeva, T. B. Kosykh, A. V. Nikolaev, Z. A. Pyatakova, A. K. Zvezdin, and A. P. Pyatakov, Phys. Status Solidi RRL 12, 1800066, (2018).CrossRefGoogle Scholar
- 8.A. S. Logginov, G. A. Meshkov, A. V. Nikolaev, and A. P. Pyatakov, JETP Lett. 86, 115, (2007).ADSCrossRefGoogle Scholar
- 9.A. P. Pyatakov, D. A. Sechin, A. S. Sergeev, A. V. Nikolaev, E. P. Nikolaeva, A. S. Logginov, and A. K. Zvezdin, Eur. Phys. Lett. 93, 17001, (2011).ADSCrossRefGoogle Scholar
- 10.A. S. Sergeev, J. Phys.: Conf. Ser. 929, 012085, (2017).Google Scholar
- 11.A. F. Kabychenkov, F. V. Lisovskii, and E. G. Mansvetova, JETP Lett. 97, 265, (2013).ADSCrossRefGoogle Scholar
- 12.G. V. Arzamastseva, A. M. Balbashov, F. V. Lisovskii, E. G. Mansvetova, A. G. Temiryazev, and M. P. Temiryazeva, J. Exp. Theor. Phys. 120, 687, (2015).ADSCrossRefGoogle Scholar
- 13.B. B. Krichevtsov, V. V. Pavlov, and R. V. Pisarev, JETP Lett. 49, 535, (1989).ADSGoogle Scholar
- 14.E. Popova, A. Shengelaya, D. Daraselia, D. Japaridze, S. Cherifi-Hertel, L. Bocher, A. Gloter, O. Stephan, Y. Dumont, and N. Keller, Appl. Phys. Lett. 110, 142404, (2017).ADSCrossRefGoogle Scholar
- 15.T. Oikawa, S. Suzuki, and K. Nakao, J. Phys. Soc. Jpn. 74, 401, (2005).ADSCrossRefGoogle Scholar
- 16.S. Wittekoek, T. J. A. Popma, J. M. Robertson, and P. F. Bongers, Phys. Rev. B 12, 2777, (1975).ADSCrossRefGoogle Scholar
- 17.Y. Hosoe, R. Suzuki, K. Takanashi, H. Yasuoka, S. Chikazumi, and Y. Sugita, J. Phys. Soc. Jpn. 55, 731, (1986).ADSCrossRefGoogle Scholar
- 18.M. M. Parish, Nature (London, U.K.) 426, 162, (2003).ADSCrossRefGoogle Scholar
- 19.A. M. Essin, A. M. Turner, J. E. Moore, and D. Vanderbilt, Phys. Rev. B 81, 205104, (2010).ADSCrossRefGoogle Scholar
- 20.A. Malashevich, I. Souza, S. Coh, and D. Vanderbilt, New J. Phys. 12, 053032, (2010).ADSCrossRefGoogle Scholar
- 21.M. Sasaki, G. Lou, Q. Liu, M. Ninomiya, T. Kato, S. Iwata, and T. Ishibashi, Jpn. J. Appl. Phys. 55, 055501, (2016).ADSCrossRefGoogle Scholar
- 22.S. S. Aplesnin, A. N. Masyugin, M. N. Sitnicov, U. I. Rybina, and T. Ishibashi, J. Magn. Magn. Mater. 464, 44, (2018).ADSCrossRefGoogle Scholar
- 23.T. Ishibashia, A. Mizusawa, M. Nagai, S. Shimizu, and K. Satoet, J. Appl. Phys. 97, 013516, (2005).ADSCrossRefGoogle Scholar
- 24.A. K. Zvezdin and A. P. Pyatakov, Phys. Usp. 52, 845, (2009).ADSCrossRefGoogle Scholar
- 25.J. van den Brink and D. I. Khomskii, J. Phys.: Condens. Matter 20, 434217, (2008).Google Scholar
- 26.I. A. Sergienko and E. Dagotto, Phys. Rev. B 73, 094434, (2006).ADSCrossRefGoogle Scholar
- 27.M. A. Essin, A. M. Turner, J. E. Moore, and D. Vanderbilt, Phys. Rev. B 81, 205104, (2010).ADSCrossRefGoogle Scholar
- 28.A. Scaramucci, E. Bousquet, M. Fechner, M. Mostovoy, and N. A. Spaldin, Phys. Rev. Lett. 109, 19, (2012).CrossRefGoogle Scholar
- 29.V. V. Shvartsman, P. Borisov, W. Kleemann, S. Kamba, and T. Katsufuji, Phys. Rev. B 81, 064426, (2010).ADSCrossRefGoogle Scholar