Advertisement

Layered Superconductor in a Magnetic Field: Breakdown of the Effective Masses Model

  • A. G. LebedEmail author
Article
  • 2 Downloads

Abstract

We theoretically study the upper critical magnetic fields at zero temperature in a quasi-two-dimensional (Q2D) superconductor in the parallel and perpendicular fields, \(H_{c 2}^{ \|}(0)\) and \(H_{c 2}^{\perp}(0)\), respectively. We find that \(H_{c 2}^{ \|}(0) \approx 0.75\left|d H_{c 2}^{ \|} / d T\right|_{T_{c}} T_{c}\) and that \(H_{c 2}^{\perp}(0) \approx 0.59\left|d H_{c 2}^{\perp} / d T\right|_{T_{c}} T_{c}\), where \(\left|d H_{c 2}^{ \|} / d T\right|_{T_{c}}\) and \(\left|d H_{c 2}^{\perp} / d T\right|_{T_{c}}\) are the corresponding Ginzburg-Landau slopes of the upper critical magnetic fields. Our results demonstrate the breakdown of the so-called effective mass model in Q2D case and may be partially responsible for the experimentally observed deviations from the effective mass model in a number of layered superconductors, including MgB2.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Abrikosov, Fundamentals of Theory of Metals, Elsevier Science, Amsterdam (1988).Google Scholar
  2. 2.
    L. P. Gor’kov, Sov. Phys. JETP 37(10), 42 (1960).Google Scholar
  3. 3.
    N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. 147, 295 (1966).ADSCrossRefGoogle Scholar
  4. 4.
    L. P. Gor’kov and T. K. Melik-Barkhudarov, ZhETF 45, 1493 (1964) [Sov. Phys. JETP 18, 1031 (1964)].Google Scholar
  5. 5.
    V. G. Kogan and S. L. Bud’ko, Physica C 385, 131 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    V. G. Kogan and R. Prozorov, Rep. Prog. Phys. 75, 114502 (2012).CrossRefGoogle Scholar
  7. 7.
    T. Kita, Phys. Rev. B 68, 184503 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    A. G. Lebed, JETP Lett. 44, 114 (1986) [Pis’ma ZhETF 44, 89 (1986)].ADSGoogle Scholar
  9. 9.
    N. Dupuis, G. Montambaux, and C. A. R. Sa de Melo, Phys. Rev. Lett. 70, 2613 (1993).ADSCrossRefGoogle Scholar
  10. 10.
    A. G. Lebed and K. Yamaji, Phys. Rev. Lett. 80, 2697 (1998).ADSCrossRefGoogle Scholar
  11. 11.
    L. P. Gor’kov and A. G. Lebed, J. Phys. (Paris) Lett. 45, L433 (1984).CrossRefGoogle Scholar
  12. 12.
    A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Mechanics, Dover, N.Y. (1963).Google Scholar
  13. 13.
    I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 6-th ed., Academic Press, London, United Kingdom (2000).zbMATHGoogle Scholar
  14. 14.
    L. N. Bulaevskii and A. A. Guseinov, Pis’ma ZhETF 19, 742 (1974) [JETP Lett. 19, 382 (1974)].ADSGoogle Scholar
  15. 15.
    R. A. Klemm, A. Luther, and M. R. Beasley, Phys. Rev. B 12, 877 (1975).ADSCrossRefGoogle Scholar
  16. 16.
    A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962).ADSCrossRefGoogle Scholar
  17. 17.
    B. S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962).ADSCrossRefGoogle Scholar
  18. 18.
    A. G. Lebed, Phys. Rev. B 97, 144504 (2018).ADSCrossRefGoogle Scholar
  19. 19.
    P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).ADSCrossRefGoogle Scholar
  20. 20.
    A. I. Larkin and Yu.N. Ovchinnikov, ZhETF 47, 1136 (1964) [Sov. Phys. JETP 20, 762 (1965)].Google Scholar
  21. 21.
    M. R. Eskildsen, M. Kugler, G. Levy, S. Tanaka, J. Jun, S. M. Kazakov, J. Karpinski, and O. Fischer, Physica C 385, 169 (2003).ADSCrossRefGoogle Scholar
  22. 22.
    J. C. Loudon, S. Yazdi, T. Kasama, N. D. Zhigadlo, and J. Karpinski, Phys. Rev. B 91, 054505 (2015).ADSCrossRefGoogle Scholar
  23. 23.
    P. Miranovic, K. Machida, and V. G. Kogan, J. Phys. Soc. Jpn. 72, 221 (2003).ADSCrossRefGoogle Scholar
  24. 24.
    T. Dahm and N. Schopoll, Phys. Rev. Lett. 91, 017001 (2003).ADSCrossRefGoogle Scholar
  25. 25.
    A. G. Lebed, Pis’ma v ZhETF 106, 491 (2017) [JETP Lett. 106, 509 (2017)].Google Scholar

Copyright information

© Nauka/Interperiodica 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of ArizonaTucsonUSA
  2. 2.L. D. Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations