Advertisement

JETP Letters

, Volume 109, Issue 11, pp 749–754 | Cite as

Effect of an Electric Field in the Heat Transfer between Metals in the Extreme Near Field

  • A. I. VolokitinEmail author
Condensed Matter
  • 10 Downloads

Abstract

Radiative heat transfer between metals in the extreme near field in the presence of a potential difference between them has been calculated. Because of the coupling between the electric field of radiation and displacements of the surfaces, the radiative heat flux between two gold plates at nanometer distances that is due to p-polarized electromagnetic waves increases by many orders of magnitude at the variation of the potential difference from 0 to 10 V. The radiative mechanism of heat transfer is compared to the phonon mechanism associated with the electrostatic and van der Waals interactions. The phonon mechanism determined by the van der Waals interaction dominates at subnanometer distances and small potential difference. However, the radiative contribution dominates at nanometer distances because the phonon contribution decreases with increasing distance more rapidly than the radiative contribution. The results obtained in this work can be used to control heat fluxes at a nanoscale by means of the potential difference.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Polder and M. van Hove, Phys. Rev. B 4, 3303 (1971).ADSCrossRefGoogle Scholar
  2. 2.
    J. B. Pendry, J. Phys.: Condens. Matter 11, 6621 (1999).ADSGoogle Scholar
  3. 3.
    K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, Surf. Sci. Rep. 57, 59 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    A. I. Volokitin and B. N. J. Persson, Phys. Rev. B 63, 205404 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    A. I. Volokitin and B. N. J. Persson, Rev. Mod. Phys. 79, 1291 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    A. I. Volokitin and B. N. J. Persson, Electromagnetic Fluctuations at the Nanoscale. Theory and Applications (Springer, Heidelberg, 2017).CrossRefGoogle Scholar
  7. 7.
    Y. Guo, S. Molesky, H. Hu, C. L. Cortes, and Z. Jacob, Appl. Phys. Lett. 105, 073903 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    M. Laroche, R. Carminati, and J.-J. Greffet, J. Appl. Phys. 100, 063704 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    R. Messina and P. Ben-Abdallah, Sci. Rep. 3, 1383 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    A. Narayanaswamy and G. Chen, Appl. Phys. Lett. 82, 3544 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-L. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, J. Quant. Spectrosc. Radiat. Lransfer 109, 305 (2008).CrossRefGoogle Scholar
  12. 12.
    V. B. Svetovoy and G. Palasantzas, Phys. Rev. Appl. 2, 034006 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J.-J. Greffet, Nature (London, U.K.) 444, 740 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-L. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, Nat. Photon. 3, 220 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    P. Ben-Abdallah and S.-A. Biehs, Phys. Rev. Lett. 112, 044301 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    P. Ben-Abdallah and S.-A. Biehs, Appl. Phys. Lett. 103, 191907 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    K. Joulain, Y. Ezzahri, J. Drevillon, and P. Ben-Abdallah, Appl. Phys. Lett. 106, 133505 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    S. M. Rytov, Theory of Electrical Fluctuations and Thermal Radiation (Akad. Nauk SSSR, Moscow, 1953) [in Russian].Google Scholar
  19. 19.
    M. L. Levin and S. M. Rytov, Theory of Equilibrium Thermal Fluctuations in Electrodynamics (Nauka, Moscow, 1967) [in Russian].Google Scholar
  20. 20.
    S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics (Springer, Berlin, 1987).CrossRefzbMATHGoogle Scholar
  21. 21.
    S. Shen, A. Narayanaswamy, and G. Chen, Nano Lett. 9, 2909 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, Nat. Photon. 3, 514 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    B. Song, A. Fiorino, E. Meyhofer, and R. Reddy, AIP Adv. 5, 053503 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    L. Cui, W. Jeong, V. Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, E. Meyhofer, and P. Reddy, Nat. Commun. 8, 1 (2017).CrossRefGoogle Scholar
  25. 25.
    K. Kim, B. Song, V. Fernandez-Hurtado, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. T. HomerReid, F. J. Garcia-Vidal, J. C. Cuevas, E. Meyhofer, and P. Reddy, Nature (London, U.K.) 528, 387 (2015).ADSCrossRefGoogle Scholar
  26. 26.
    B. N. J. Persson, A. I. Volokitin, and H. Ueba, J. Phys.: Condens. Matter 23, 045009 (2011).ADSGoogle Scholar
  27. 27.
    J. B. Pendry, K. Sasihithlu, and R. V. Craste, Phys. Rev. B 94, 075414 (2016).ADSCrossRefGoogle Scholar
  28. 28.
    K. Sasihithlu, J. B. Pendry, and R. V. Craster, Z. Naturforsch. A 72, 181 (2017).ADSCrossRefGoogle Scholar
  29. 29.
    Y. Ezzahri and K. Joulain, Phys. Rev. B 90, 115433 (2014).ADSCrossRefGoogle Scholar
  30. 30.
    D. P. Sellan, E. S. Landry, K. Sasihithlu, A. Narayanaswamy, A. J. H. McGaughey, and C. H. Amon, Phys. Rev. B 85, 024118 (2012).ADSCrossRefGoogle Scholar
  31. 31.
    V. Chiloyan, J. Garg, K. Esfarjani, and G. Chen, Nat. Commun. 6, 6755 (2015).ADSCrossRefGoogle Scholar
  32. 32.
    B. V. Budaev and D. B. Bogy, Appl. Phys. Lett. 99, 053109 (2011).ADSCrossRefGoogle Scholar
  33. 33.
    Z.-Y. Ong, Y. Cai, and G. Zhang, Phys. Rev. B 94, 165427 (2016).ADSCrossRefGoogle Scholar
  34. 34.
    I. Altfeder, A. A. Voevodin, and A. K. Roy, Phys. Rev. Lett. 105, 166101 (2010).ADSCrossRefGoogle Scholar
  35. 35.
    M. Prunnila and J. Meltaus, Phys. Rev. Lett. 105, 125501 (2010).ADSCrossRefGoogle Scholar
  36. 36.
    B. N. J. Persson, J. Chem. Phys. 115, 3840 (2001).ADSCrossRefGoogle Scholar
  37. 37.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).Google Scholar
  38. 38.
    P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, Phys. Rev. 77, 035431 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Samara State Technical UniversitySamaraRussia

Personalised recommendations