Advertisement

JETP Letters

, Volume 109, Issue 11, pp 695–699 | Cite as

Photoionization of Atomic Systems in Squeezed States of Light

  • S. N. BalybinEmail author
  • O. V. Tikhonova
Optics and Laser Physics
  • 6 Downloads

Abstract

The ionization of an atom by a nonclassical electromagnetic field has been studied by a method developed to obtain results for an arbitrary initial state of the field, including squeezed vacuum with a large average number of photons. Characteristics of the ionization of atomic systems by nonclassical squeezed light have been demonstrated for the first time. In contrast to the case of a coherent field, a significantly smoother decrease in the contributions of different above-threshold channels to ionization has been found. Features of photo-electron spectra in continuum have been revealed for the first time as a significant overlapping of peaks from different ionization channels.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. V. Fedorov, Atomic and Free Electrons in a Strong Light Field (World Scientific, Singapore, 1997).Google Scholar
  2. 2.
    N. B. Delone and V. P. Krainov, Phys. Usp. 41, 469 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    R. V. Karapetyan and M. V. Fedorov, Sov. Phys. JETP 48, 412 (1978).ADSGoogle Scholar
  4. 4.
    J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73, 565 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Univ. Press, Cambridge, 1997).CrossRefGoogle Scholar
  6. 6.
    S. N. Balybin, P. R. Sharapova, and O. V. Tikhonova, Eur. Phys. J. D 71, 109 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    S. N. Balybin, R. V. Zakharov, and O. V. Tikhonova, Laser Phys. Lett. 15, 055301 (2018).ADSCrossRefGoogle Scholar
  8. 8.
    L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).Google Scholar
  9. 9.
    H. Reiss, Phys. Rev. A 22, 1786 (1980).ADSCrossRefGoogle Scholar
  10. 10.
    D. M. Volkov, Z. Phys. 94, 250 (1935).ADSCrossRefGoogle Scholar
  11. 11.
    I. Berson, Sov. Phys. JETP 29, 871 (1969).ADSGoogle Scholar
  12. 12.
    J. Bergou and S. Varro, J. Phys. A: Math. Gen. 14, 1469 (1981).ADSCrossRefGoogle Scholar
  13. 13.
    T. Sh. Iskhakov, A. M. Perez, K. Yu. Spasibko, M. V. Chekhova, and G. Leuchs, Opt. Lett. 37, 1919 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    A. I. Lvovsky, in Photonics, Ed. by D. L. Andrews (Wiley, Chichester, 2015), Vol. 1; arXiv:1401.4118.Google Scholar
  15. 15.
    I. A. Gonoskov, G. A. Vugalter, and V. A. Mironov, J. Exp. Theor. Phys. 105, 1119 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    I. A. Burenkov and O. V. Tikhonova, J. Phys. B: At., Mol. Opt. Phys. 43, 235401 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    A. M. Popov and O. V. Tikhonova, J. Exp. Theor. Phys. 95, 844 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations