JETP Letters

, Volume 109, Issue 11, pp 715–721 | Cite as

Nonlinear Hall Effect in Three-Dimensional Weyl and Dirac Semimetals

  • O. O. Shvetsov
  • V. D. Esin
  • A. V. Timonina
  • N. N. Kolesnikov
  • E. V. DeviatovEmail author
Condensed Matter


We experimentally investigate a nonlinear Hall effect for three-dimensional WTe2 and Cd3As2 single crystals, representing Weyl and Dirac semimetals, respectively. We observe finite second-harmonic Hall voltage, which depends quadratically on the longitudinal current in zero magnetic field, as it has been predicted theoretically. We demonstrate that second-harmonic Hall voltage shows odd-type dependence on the direction of the magnetic field, which is a strong argument in favor of current-magnetization effects. In contrast, one order of magnitude higher thermopower signal is independent of the magnetic field direction. Thus, the magnetic field dependence allows distinguishing the nonlinear Hall effect from a thermoelectric response.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Deyo, L. E. Golub, E. L. Ivchenko, and B. Spivak, arXiv:0904.1917 (2009).Google Scholar
  2. 2.
    L. E. Golub, E. L. Ivchenko, and B. Z. Spivak, JETP Lett. 105, 782 (2017).ADSCrossRefGoogle Scholar
  3. 3.
    J. E. Moore and J. Orenstein, Phys. Rev. Lett. 105, 026805 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    I. Sodemann and L. Fu, Phys. Rev. Lett. 115, 216806 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    T. Low, Y. Jiang, and F. Guinea, Phys. Rev. B 92, 235447 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    H. Isobe, S.-Y. Xu, and L. Fu, arXiv:1812.08162 (2018).Google Scholar
  7. 7.
    K. Kang, T. Li, E. Sohn, J. Shan, and Kin Fai Mak, arXiv:1809.08744 (2018).Google Scholar
  8. 8.
    Q. Ma, S.-Y. Xu, Huitao Shen, et al., arXiv:1809.09279 (2018).Google Scholar
  9. 9.
    N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys. 90, 15001 (2018).ADSCrossRefGoogle Scholar
  10. 10.
    Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Phys. Rev. B 88, 125427 (2013). ADSCrossRefGoogle Scholar
  11. 11.
    Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Phys. Rev. B 85, 195320 (2012). ADSCrossRefGoogle Scholar
  12. 12.
    Z. K. Liu, J. Jiang, B. Zhou, et al., Nat. Mater. 13, 677 (2014). ADSCrossRefGoogle Scholar
  13. 13.
    S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, and R. J. Cava, Phys. Rev. Lett. 113, 027603 (2014). ADSCrossRefGoogle Scholar
  14. 14.
    Ch. Wang, Y. Zhang, J. Huang, et al., Phys. Rev. B 94, 241119(R) (2016).ADSCrossRefGoogle Scholar
  15. 15.
    Y. Wu, D. Mou, N. H. Jo, K. Sun, L. Huang, S. L. Bud’ko, P. C. Canfield, and A. Kaminski, Phys. Rev. B 94, 121113(R) (2016).ADSCrossRefGoogle Scholar
  16. 16.
    N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    C. Fu, Th. Scaffidi, J. Waissman, Y. Sun, R. Saha, S. J. Watzman, A. K. Srivastava, G. Li, W. Schnelle, P. Werner, M. E. Kamminga, S. Sachdev, S. S. P. Parkin, S. A. Hartnoll, C. Felser, and J. Gooth, arXiv:1802.09468.Google Scholar
  18. 18.
    T. Zhou, Ch. Zhang, H. Zhang, F. Xiu, and Zh. Yang, Inorg. Chem. Front. 3, 1637 (2016).CrossRefGoogle Scholar
  19. 19.
    E. B. Olshanetsky, Z. D. Kvon, M. V. Entin, L. I. Magarill, A. Levin, G. M. Gusev, and N. N. Mikhailov, JETP Lett. 107, 789 (2018).ADSCrossRefGoogle Scholar
  20. 20.
    A. Mokashi, S. Li, B. Wen, S. V. Kravchenko, A. A. Shashkin, V. T. Dolgopolov, and M. P. Sarachik, Phys. Rev. Lett. 109, 096405 (2012).ADSCrossRefGoogle Scholar
  21. 21.
    N. N. Kolesnikov, M. P. Kulakov, and Yu. N. Ivanov, J. Cryst. Growth 125, 576 (1992).ADSCrossRefGoogle Scholar
  22. 22.
    E. B. Borisenko, V. A. Berezin, N. N. Kolesnikov, V. K. Gartman, D. V. Matveev, and O. F. Shakhlevich, Phys. Solid State 59, 1310 (2017).ADSCrossRefGoogle Scholar
  23. 23.
    A. Sidorov, A. E. Petrova, A. N. Pinyagin, N. N. Kolesnikov, S. S. Khasanov, and S. M. Stishov, J. Exp. Theor. Phys. 122, 1047 (2016).ADSCrossRefGoogle Scholar
  24. 24.
    W. Yu, W. Pan, D. L. Medlin, M. A. Rodriguez, S. R. Lee, Z. Bao, and F. Zhang, arxiv:1801.04364.Google Scholar
  25. 25.
    O. O. Shvetsov, V. D. Esin, A. V. Timonina, N. N. Kolesnikov, and E. V. Deviatov, Phys. Rev. B 99, 125305 (2019). ADSCrossRefGoogle Scholar
  26. 26.
    I. Crassee, R. Sankar, W.-L. Lee, A. Akrap, and M. Orlita, Phys. Rev. Mater. 2, 120302 (2018).CrossRefGoogle Scholar
  27. 27.
    M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, Nature (London, U.K.) 514, 205 (2014). ADSCrossRefGoogle Scholar
  28. 28.
    A. Kononov, O. O. Shvetsov, S. V. Egorov, A. V. Timonina, N. N. Kolesnikov, and E. V. Deviatov, Eur. Phys. Lett. 122, 27004 (2018). ADSCrossRefGoogle Scholar
  29. 29.
    M. C. Steele, Phys. Rev. 107, 81 (1957).ADSCrossRefGoogle Scholar
  30. 30.
    M. N. Ali, Q. Gibson, S. Jeon, B. B. Zhou, A. Yazdani, and R. J. Cava, Inorg. Chem. 53, 4062 (2014). CrossRefGoogle Scholar
  31. 31.
    G. Steigmann and J. Goodyear, Acta Crystallogr., Sect. B 24, 1062 (1968).CrossRefGoogle Scholar
  32. 32.
    H. Yi, Zh. Wang, Ch. Chen, et al., Sci. Rep. 4, 6106 (2014).CrossRefGoogle Scholar
  33. 33.
    E. Tang and L. Fu, Nat. Phys. 10, 964 (2014); arXiv:1403.7523.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • O. O. Shvetsov
    • 1
  • V. D. Esin
    • 1
  • A. V. Timonina
    • 1
  • N. N. Kolesnikov
    • 1
  • E. V. Deviatov
    • 1
    Email author
  1. 1.Institute of Solid State Physics of the Russian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations