Skip to main content
Log in

Kinetics of the Atomic Structure of Palladium Nanoparticles during the Desorption of Hydrogen According to X-Ray Diffraction

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The process of desorption of hydrogen from small palladium nanoparticles is monitored by time-resolved synchrotron X-ray diffraction. Changes in the diffraction patterns corresponding to the transition from the palladium β-phase to the α-phase are detected with an accuracy of 0.3 s. The model of the continuous change in the size of the β-phase region can be excluded, since the Rietveld analysis does not reveal a broadening of the diffraction peaks corresponding to the palladium lattice during desorption. The theoretical simulation shows the presence of a surface/core interface with different average cell parameters. However, the near-surface layers of the nanoparticle make a lower contribution to the observed diffraction reflections because of a lower crystallinity. The cell parameter in the nanoparticle core depends on the hydrogen concentration both in the core itself and in the shell due to the presence of stresses at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Binder, Phys. Rev. Lett. 45, 811 (1980).

    Article  ADS  Google Scholar 

  2. E. A. Brener, V. I. Marchenko, and R. Spatschek, Phys. Rev. E 75, 041604 (2007).

    Article  ADS  Google Scholar 

  3. R. B. Schwarz and A. G. Khachaturyan, Phys. Rev. Lett. 74, 2523 (1995).

    Article  ADS  Google Scholar 

  4. A. Borgschulte, R. Gremaud, and R. Griessen, Phys. Rev. B 78, 094106 (2008).

    Article  ADS  Google Scholar 

  5. V. P. Zhdanov, A. Krozer, and B. Kasemo, Phys. Rev. B 47, 11044 (1993).

    Article  ADS  Google Scholar 

  6. M. Yamauchi, R. Ikeda, H. Kitagawa, and M. Takata, J. Phys. Chem. C 112, 3294 (2008).

    Article  Google Scholar 

  7. H. Jobic and A. Renouprez, J. Less-Common Met. 129, 311 (1987).

    Article  Google Scholar 

  8. B. Ingham, M. F. Toney, S. C. Hendy, T. Cox, D. D. Fong, J. A. Eastman, P. H. Fuoss, K. J. Stevens, A. Lassesson, and S. Brown, Phys. Rev. B 78, 245408 (2008).

    Article  ADS  Google Scholar 

  9. D. Narehood, S. Kishore, H. Goto, J. Adair, J. Nelson, H. Gutierrez, and P. Eklund, Int. J. Hydrogen Energ. 34, 952 (2009).

    Article  Google Scholar 

  10. A. L. Bugaev, A. A. Guda, K. A. Lomachenko, L. A. Bugaev, and A. V. Soldatov, Bull. Russ. Acad. Sci.: Phys. 79, 1180 (2015).

    Article  Google Scholar 

  11. D. Teschner, J. Borsodi, A. Wootsch, Z. Revay, M. Havecker, A. Knop-Gericke, S. D. Jackson, and R. Schlogl, Science (Washington, DC, U. S.) 320, 86 (2008).

    Article  ADS  Google Scholar 

  12. C. Langhammer, V. P. Zhdanov, I. Zoric, and B. Kasemo, Phys. Rev. Lett. 104, 135502 (2010).

    Article  ADS  Google Scholar 

  13. D. Matsumura, Y. Okajima, Y. Nishihata, and J. Mizuki, J. Alloys Compd. 509, S849 (2011).

    Article  Google Scholar 

  14. A. Piovano, A. Lazzarini, R. Pellegrini, G. Leofanti, G. Agostini, S. Rudic, A. L. Bugaev, C. Lamberti, and E. Groppo, Adv. Condens. Matter Phys. 2015, 803267 (2015).

    Article  Google Scholar 

  15. A. L. Bugaev, A. A. Guda, K. A. Lomachenko, V. V. Shapovalov, A. Lazzarini, J. G. Vitillo, L. A. Bugaev, E. Groppo, R. Pellegrini, A. V. Soldatov, J. A. van Bokhoven, and C. Lamberti, J. Phys. Chem. C 121, 18202 (2017).

    Article  Google Scholar 

  16. A. L. Bugaev, A. A. Guda, K. A. Lomachenko, A. Lazzarini, V. V. Srabionyan, J. G. Vitillo, A. Piovano, E. Groppo, L. A. Bugaev, A. V. Soldatov, V. P. Dmitriev, R. Pellegrini, J. A. van Bokhoven, and C. Lamberti, J. Phys.: Conf. Ser. 712, 012032 (2016).

    Google Scholar 

  17. A. L. Bugaev, A. A. Guda, A. Lazzarini, K. A. Lomachenko, E. Groppo, R. Pellegrini, A. Piovano, H. Emerich, A. V. Soldatov, L. A. Bugaev, V. P. Dmitriev, J. A. van Bokhoven, and C. Lamberti, Catal. Today 283, 119 (2017).

    Article  Google Scholar 

  18. A. L. Bugaev, O. A. Usoltsev, A. Lazzarini, K. A. Lomachenko, A. A. Guda, R. Pellegrini, M. Carosso, J. G. Vitillo, E. Groppo, J. A. van Bokhoven, A. V. Soldatov, and C. Lamberti, Faraday Discuss. 208, 187 (2018).

    Article  ADS  Google Scholar 

  19. W. van Beek, O. V. Safonova, G. Wiker, and H. Emerich, Phase Trans. 84, 726 (2011).

    Article  Google Scholar 

  20. J. Kieffer and J. P. Wright, Powder Diffract. 28, S339 (2013).

    Article  ADS  Google Scholar 

  21. V. Petříček, M. Dušek, and L. Palatinus, Z. Kristallogr. - Cryst. Mater. 229, 345 (2014).

    Google Scholar 

  22. P. E. Blochl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  23. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  24. N. Pinna, in Scattering Methods and the Properties of Polymer Materials, Ed. by N. Stribeck and B. Smarsly (Springer, Berlin, Heidelberg, 2005), p. 29.

  25. A. A. Skorynina, A. A. Tereshchenko, O. A. Usoltsev, A. L. Bugaev, K. A. Lomachenko, A. A. Guda, E. Groppo, R. Pellegrini, C. Lamberti, and A. Soldatov, Radiat. Phys. Chem. (in press). https://doi.org/10.1016/j.radphyschem.2018.11.033

  26. A. L. Bugaev, A. A. Guda, I. A. Pankin, E. Groppo, R. Pellegrini, A. Longo, A. V. Soldatov, and C. Lamberti, Catal. Today (in press). https://doi.org/10.1016/j.cattod.2019.02.068

  27. A. L. Bugaev, A. A. Guda, K. A. Lomachenko, V. V. Srabionyan, L. A. Bugaev, A. V. Soldatov, C. Lamberti, V. P. Dmitriev, and J. A. van Bokhoven, J. Phys. Chem. C 118, 10416 (2014).

    Article  Google Scholar 

  28. C. Wadell, T. Pingel, E. Olsson, I. Zoric, V. P. Zhdanov, and C. Langhammer, Chem. Phys. Lett. 603, 75 (2014).

    Article  ADS  Google Scholar 

  29. V. P. Zhdanov and B. Kasemo, Chem. Phys. Lett. 460, 158 (2008).

    Article  ADS  Google Scholar 

  30. B. D. Kay, C. H. F. Peden, and D. W. Goodman, Phys. Rev. B 34, 817 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. L. Bugaev or A. A. Guda.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 109, No. 9, pp. 615–620.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bugaev, A.L., Guda, A.A., Lomachenko, K.A. et al. Kinetics of the Atomic Structure of Palladium Nanoparticles during the Desorption of Hydrogen According to X-Ray Diffraction. Jetp Lett. 109, 594–599 (2019). https://doi.org/10.1134/S002136401909008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136401909008X

Navigation