Advertisement

JETP Letters

, Volume 109, Issue 8, pp 512–515 | Cite as

Optimal Dynamics of a Spherical Squirmer in Eulerian Description

  • V. P. RubanEmail author
Plasma, Hydro- and Gas Dynamics

Abstract

The problem of optimization of a cycle of tangential deformations of the surface of a spherical object (micro-squirmer) self-propelling in a viscous fluid at low Reynolds numbers is represented in a noncanonical Hamiltonian form. The evolution system of equations for the coefficients of expansion of the surface velocity in the associated Legendre polynomials \(P_n^1(\rm{cos}\;\theta)\) is obtained. The system is quadratically nonlinear, but it is integrable in the three-mode approximation. This allows a theoretical interpretation of numerical results previously obtained for this problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Lauga and T. R. Powers, Rep. Prog. Phys. 72, 096601 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    E. M. Purcell, Am. J. Phys. 45, 3 (1977).ADSCrossRefGoogle Scholar
  3. 3.
    A. Najafi and R. Golestanian, Phys. Rev. E 69, 062901 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    R. Golestanian and A. Ajdari, Phys. Rev. E 77, 036308 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    F. Alouges, A. DeSimone, and A. Lefebvre, Eur. Phys. J. E 28, 279 (2009).CrossRefGoogle Scholar
  6. 6.
    R. Zargar, A. Najafi, and M. Miri, Phys. Rev. E 80, 026308 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    J. E. Avron, O. Gat, and O. Kenneth, Phys. Rev. Lett. 93, 186001 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    E. Gauger and H. Stark, Phys. Rev. E 74, 021907 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    D. Tam and A. E. Hosoi, Phys. Rev. Lett. 98, 068105 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    D. Takagi, Phys. Rev. E 92, 023020 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    M. J. Lighthill, Commun. Pure Appl. Math. 5, 109 (1952).CrossRefGoogle Scholar
  12. 12.
    J. R. Blake, J. Fluid Mech. 46, 199 (1971).ADSCrossRefGoogle Scholar
  13. 13.
    O. S. Pak and E. Lauga, J. Eng. Math. 88, 1 (2014).CrossRefGoogle Scholar
  14. 14.
    M. Theers, E. Westphal, G. Gompper, and R. G. Winkler, Soft Matter 12, 7372 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    D. Papavassiliou and G. P. Alexander, J. Fluid Mech. 813, 618 (2017).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    S. Michelin and E. Lauga, Phys. Fluids 22, 111901 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations