Advertisement

Two Roads to Antispacetime in Distorted B Phase: Kibble Wall and Half-quantum Vortex

  • G. E. VolovikEmail author
Article
  • 9 Downloads

Abstract

We consider the emergent tetrad gravity and the analog of antispacetime realized in the recent experiments on the composite defects in superfluid 3He (J.T. Mäkinen, et al., Nat. Comm. 10, 237 (2019)): the Kibble walls bounded by strings (the half quantum vortices). The antispacetime can be reached in two different ways: by the “safe” route around the Alice string or by dangerous route across the Kibble wall. This consideration also suggests the scenario of the formation of the discrete symmetry – the parity P in Dirac equations–from the continuous symmetry existing on the more fundamental level.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Nissinen and G. E. Volovik, Phys. Rev. D 97, 025018 (2018).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    H.B. Nielsen and M. Ninomiya, Nucl. Phys. B 185, 20 (1981).ADSCrossRefGoogle Scholar
  3. 3.
    H.B. Nielsen and M. Ninomiya, Nucl. Phys. B 193, 173 (1981).ADSCrossRefGoogle Scholar
  4. 4.
    C.D. Froggatt and H. B. Nielsen, Origin of Symmetry, World Scientific, Singapore (1991).CrossRefGoogle Scholar
  5. 5.
    G. E. Volovik, The Universe in a Helium Droplet, Clarendon Press, Oxford (2003).zbMATHGoogle Scholar
  6. 6.
    P. Hŏrava, Phys. Rev. Lett. 95, 016405 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    C. Herring, Phys. Rev. 52, 365 (1937).ADSCrossRefGoogle Scholar
  8. 8.
    A. A. Abrikosov and S. D. Beneslavskii, JETP 32, 699 (1971).ADSGoogle Scholar
  9. 9.
    A. A. Abrikosov, J. Low Temp. Phys. 5, 141 (1972).ADSCrossRefGoogle Scholar
  10. 10.
    G. E. Volovik, Physica B 162, 222 (1990).ADSCrossRefGoogle Scholar
  11. 11.
    D. Diakonov, arXiv:1109.0091.Google Scholar
  12. 12.
    A.A. Vladimirov and D. Diakonov, Phys. Rev. D 86, 104019 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    I. E. Dzyaloshinskii and G.E. Volovick, Ann. Phys. 125, 67 (1980).ADSCrossRefGoogle Scholar
  14. 14.
    J. Nissinen and G. E. Volovik, arXiv:1812.03175.Google Scholar
  15. 15.
    F.R. Klinkhamer and G. E. Volovik, arXiv:1812.07046.Google Scholar
  16. 16.
    M. Christodoulou, A. Riello, and C. Rovelli, Int. J. Mod. Phys. D 21, 1242014 (2012); arXiv:1206.3903.ADSCrossRefGoogle Scholar
  17. 17.
    C. Rovelli and E. Wilson-Ewing, Phys. Rev. D 86, 064002 (2012); arXiv:1205.0733.ADSCrossRefGoogle Scholar
  18. 18.
    L. Boyle, K. Finn, and N. Turok, Phys. Rev. Lett. 121, 251301 (2018).ADSCrossRefGoogle Scholar
  19. 19.
    G. E. Volovik, Pis’ma v ZhETF 109, 10 (2019); arXiv:1806.06554.Google Scholar
  20. 20.
    G. E. Volovik, arXiv:1902.07584.Google Scholar
  21. 21.
    J. T. Mäkinen, V.V. Dmitriev, J. Nissinen, J. Rysti, G. E. Volovik, A.N. Yudin, K. Zhang, and V.B. Eltsov, Nat. Comm. 10, 237 (2019); arXiv:1807.04328.ADSCrossRefGoogle Scholar
  22. 22.
    T. W.B. Kibble, G. Lazarides, and Q. Shafi, Phys. Rev. D 26, 435 (1982).ADSCrossRefGoogle Scholar
  23. 23.
    S. Weinberg, The Quantum Theory of Fields, Cambridge Univ., Cambridge (1996), Section 5.4.CrossRefzbMATHGoogle Scholar
  24. 24.
    G. E. Volovik, Pis’ma ZhETF 91, 61 (2010) [JETP Lett. 91, 55 (2010)]; arXiv:0912.0502.Google Scholar
  25. 25.
    D. Vollhardt and P. Wälfle, The Superfluid Phases of Helium 3, Taylor and Francis, London (1990).CrossRefGoogle Scholar
  26. 26.
    Yu. Makhlin, M. Silaev, and G. E. Volovik, Phys. Rev. B 89 174502 (2014); arXiv:1312.2677.Google Scholar
  27. 27.
    V.V. Dmitriev, A.A. Senin, A.A. Soldatov, and A. N. Yudin, Phys. Rev. Lett. 115, 165304 (2015).ADSCrossRefGoogle Scholar
  28. 28.
    S. Autti, V.V. Dmitriev, J.T. Mäkinen, A.A. Soldatov, G. E. Volovik, A. N. Yudin, V. V. Zavjalov, and V.B. Eltsov, Phys. Rev. Lett. 117, 255301 (2016); arXiv:1508.02197.ADSCrossRefGoogle Scholar
  29. 29.
    M. M. Salomaa and G. E. Volovik, Phys. Rev. B 37, 9298 (1988).ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    L. V. Levitin, B. Yager, L. Sumner, B. Cowan, A. J. Casey, J. Saunders, N. Zhelev, R.G. Bennett, and J.M. Parpia, Phys. Rev. Lett. 122, 085301 (2019).ADSCrossRefGoogle Scholar
  31. 31.
    A. Schwarz, Nucl. Phys. B 208, 141 (1982).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Low Temperature Laboratory, Aalto UniversitySchool of Science and TechnologyAALTOFinland
  2. 2.Landau Institute for Theoretical PhysicsChernogolovkaRussia

Personalised recommendations