Advertisement

Photoionization of Endohedrals with Account of Fullerenes Polarization

  • M.Ya. AmusiaEmail author
  • L.V. Chernysheva
Article

Abstract

We have calculated photoionization cross-section of endohedral atoms A@CN. We took into account the polarizability of the fullerene electron shell CN that modifies the incoming photon beam and the one-electron wave functions of the caged atom A. We employ simplified versions of both static and dynamic polarization. The properly modified one-electron wave functions became a starting point of the account of the multi-electron correlations in the frame of the random phase approximation with exchange. We treat atomic and fullerenes polarization that act upon photoelectron similarly, substituting them by static polarization potential. The photon beam polarizes the fullerene. This effect is accounted for introducing a polarization factor. As concrete objects, we have considered Ar and Xe atoms inside fullerene C60. Inclusion of polarization prominently increases the photoionization cross-section mainly close to the threshold.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.Ya. Amusia and A. S. Baltenkov, Phys. A, 73, 062723 (2006).Google Scholar
  2. 2.
    M.Ya. Amusia and L.V. Chernysheva, JETP Lett., 103(4), 260 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    V.K. Dolmatov, M.Ya. Amusia, and L.V. Chernysheva, Phys. Rev. A, 95, 012709 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    M.Ya. Amusia, L.V. Chernysheva, and V.G. Yarzhemsky, Handbook of Theoretical Atomic Physics, Springer, Berlin (2012).CrossRefGoogle Scholar
  5. 5.
    V.K. Dolmatov, Advances in Quantum Chemistry, Theory of Quantum Confined Systems, ed. by J. R. Sabin and E. Brandas, Academic Press, N.Y. (2009), v., 58, p. 13.Google Scholar
  6. 6.
    A. S. Baltenkov, S.T. Manson, and A. Z. Msezane, J. Phys. B: At. Mol. Opt. Phys., 48, 185103 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    M.Ya. Amusia and A. S. Kheifets, Phys. Lett. A, 82(8), 407 (1981).ADSCrossRefGoogle Scholar
  8. 8.
    M.Ya. Amusia and A. S. Kheifets, Phys. Lett. A, 89(9), 437 (1982).ADSCrossRefGoogle Scholar
  9. 9.
    M.Ya. Amusia, L.V. Chernysheva, and S.K. Semenov, ATOM-M. Algorithms and Programs for Investigating Atomic and Molecular Processes, “Nauka” Publishers, Saint-Petersburg branch (2016).Google Scholar
  10. 10.
    M.Ya. Amusia, A. S. Baltenkov, L.V. Chernysheva, Z. Felfli, and A. Z. Msezane, J. Phys. B: At. Mol. Opt. Phys., 38, L169 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    A. L. D. Kilcoyne, A. Aguilar, A. Muller, S. Schippers, C. Cisneros, G. Alna’Washi, N. B. Aryal, K.K. Baral, D.A. Esteves, C. M. Thomas, and R.A. Phaneuf, Phys. Rev. Lett., 105, 213001 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Racah Institute of Physicsthe Hebrew UniversityJerusalemIsrael
  2. 2.A. F. Ioffe Physical-Technical InstituteSt. PetersburgRussia

Personalised recommendations