Advertisement

Tetrads and q-theory

  • F. R. KlinkhamerEmail author
  • G. E. VolovikEmail author
Article
  • 1 Downloads

Abstract

As the microscopic structure of the deep relativistic quantum vacuum is unknown, a phenomenological approach (q-theory) has been proposed to describe the vacuum degrees of freedom and the dynamics of the vacuum energy after the Big Bang. The original q-theory was based on a four-form field strength from a three-form gauge potential. However, this realization of q-theory, just as others suggested so far, is rather artificial and does not take into account the fermionic nature of the vacuum. We now propose a more physical realization of the q-variable. In this approach, we assume that the vacuum has the properties of a plastic (malleable) fermionic crystalline medium. The new approach unites general relativity and fermionic microscopic (trans-Planckian) degrees of freedom, as the approach involves both the tetrad of standard gravity and the elasticity tetrad of the hypothetical vacuum crystal. This approach also allows for the description of possible topological phases of the quantum vacuum.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.R. Klinkhamer and G. E. Volovik, Phys. Rev. D 77, 085015 (2008); arXiv:0711.3170.ADSCrossRefGoogle Scholar
  2. 2.
    F.R. Klinkhamer and G.E. Volovik, JETP Lett. 103, 627 (2016); arXiv:1604.06060.ADSCrossRefGoogle Scholar
  3. 3.
    F.R. Klinkhamer and G.E. Volovik, J. Phys. Conf. Ser. 314, 012004 (2011); arXiv:1102.3152.CrossRefGoogle Scholar
  4. 4.
    F.R. Klinkhamer, M. Savelainen, and G.E. Volovik, JETP, 125, 268 (2017); arXiv:1601.04676.ADSCrossRefGoogle Scholar
  5. 5.
    F.R. Klinkhamer and G. E. Volovik, Mod. Phys. Lett. A 31, 1650160 (2016); arXiv:1601.00601.ADSCrossRefGoogle Scholar
  6. 6.
    S.W. Hawking, Phys. Lett. B 134, 403 (1984).ADSCrossRefGoogle Scholar
  7. 7.
    S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, John Wiley and Sons, N.Y. (1972).Google Scholar
  8. 8.
    I. E. Dzyaloshinskii and G.E. Volovick, Ann. Phys. 125, 67 (1980).ADSCrossRefGoogle Scholar
  9. 9.
    J. Nissinen and G. E. Volovik, JETP 127, 948 (2018); arXiv:1803.09234.ADSCrossRefGoogle Scholar
  10. 10.
    J. Nissinen and G. E. Volovik, arXiv:1812.03175.Google Scholar
  11. 11.
    A. D. Dolgov, JETP Lett. 41, 345 (1985).ADSGoogle Scholar
  12. 12.
    A. D. Dolgov, Phys. Rev. D, 55, 5881 (1997); arXiv:astro-ph/9608175.ADSCrossRefGoogle Scholar
  13. 13.
    V. A. Rubakov and P.G. Tinyakov, Phys. Rev. D, 61, 087503 (2000); arXiv:hep-ph/9906239.ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    V. Emelyanov and F.R. Klinkhamer, Phys. Rev. D, 85, 063522 (2012); arXiv:1107.0961.ADSCrossRefGoogle Scholar
  15. 15.
    V. Emelyanov and F.R. Klinkhamer, Phys. Rev. D, 85, 103508 (2012); arXiv:1109.4915.ADSCrossRefGoogle Scholar
  16. 16.
    O. Santillan and M. Scornavacche, JCAP, 1710, 048 (2017); arXiv:1705.04897.ADSCrossRefGoogle Scholar
  17. 17.
    F.R. Klinkhamer, Brief Report: Linearized Einstein gravity from four-form q-theory at equilibrium, preprint KA–TP–25–2016 [available from https://www.itp.kit.edu/ publications/preprints/2016].Google Scholar
  18. 18.
    F.R. Klinkhamer, Int. J. Mod. Phys. D, 26, 1750006 (2016); arXiv:1604.03065.ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    A. Anastasiou, L. Borsten, M. J. Duff, S. Nagy, and M. Zoccali, Phys. Rev. Lett., 121, 211601 (2018); arXiv:1807.02486.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Low Temperature LaboratoryAalto UniversityAaltoFinland
  3. 3.Landau Institute for Theoretical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations