Advertisement

JETP Letters

, Volume 109, Issue 5, pp 340–344 | Cite as

Transition between a Photonic Crystal and a Metamaterial with Electric Response in Dielectric Structures

  • E. E. Maslova
  • M. F. Limonov
  • M. V. RybinEmail author
Miscellaneous
  • 1 Downloads

Abstract

The feasibility of dielectric structures possessing metamaterial properties owing to electric Mie resonances is theoretically demonstrated. The structures are formed by homogeneous dielectric cylinders occupying the sites of a simple hexagonal or square lattice. The (normalized cylinder radius, dielectric constant) phase diagram is constructed and demonstrates a region where the effective dielectric constant εeff of the metamaterial is close to zero. The simulation of the propagation of a Gaussian beam through a prism made of this metamaterial shows that the vanishingly small value of εeff is insensitive to the orientation of the crystal axes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, 2008).zbMATHGoogle Scholar
  2. 2.
    K. Sakoda, Optical Properties of Photonic Crystals (Springer Science, Berlin, 2004), Vol. 80.Google Scholar
  3. 3.
    A. K. Sarychev and V. M. Shalaev, Electrodynamics of Metamaterials (Nauchnyi Mir, Moscow, 2011).zbMATHGoogle Scholar
  4. 4.
    Electromagnetic Metamaterials: Physics and Engineering Exploration, Ed. by N. Enghata and R. Ziolkowski (Wiley-IEEE, New York, 2006).Google Scholar
  5. 5.
    V. G. Veselago, Sov. Phys. Usp. 10, 509 (1967).ADSCrossRefGoogle Scholar
  6. 6.
    U. Leonhardt, Science (Washington, DC, U. S.) 312, 1777 (2006).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    P.-Y. Chen, J Soric, and A. Alù, Adv. Mater. 24, OP281 (2012).Google Scholar
  8. 8.
    Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science (Washington, DC, U. S.) 315, 1686 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    S. O’Brien and J. B. Pendry, J. Phys.: Condens. Matter 14, 4035 (2002).ADSGoogle Scholar
  10. 10.
    R. C. McPhedran, I. V. Shadrivov, B. T. Kuhlmey, and Y. S. Kivshar, NPG Asia Mater. 3, 100 (2011).CrossRefGoogle Scholar
  11. 11.
    S. Kruk and Y. Kivshar, ACS Photon. 4, 2638 (2017).CrossRefGoogle Scholar
  12. 12.
    M. V. Rybin, D. S. Filonov, K. B. Samusev, P. A. Belov, Y. S. Kivshar, Yu. S. Kivshar, and M. F. Limonov, Nat. Commun. 6, 10102 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, Phys. Rev. Lett. 99, 107401 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    I. Liberal and N. Engheta, Nat. Photon. 11, 149 (2017).ADSCrossRefGoogle Scholar
  15. 15.
    S. V. Li, Y. S. Kivshar, and M. V. Rybin, ACS Photon. (2018).Google Scholar
  16. 16.
    C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, New York, 1998).CrossRefGoogle Scholar
  17. 17.
    N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, Nature (London, U.K.) 525, 77 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    K. R. Simovskii, Opt. Spectrosc. 107, 726 (2009).CrossRefGoogle Scholar
  19. 19.
    E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Alpha Science Int., Oxford, 2005).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • E. E. Maslova
    • 1
  • M. F. Limonov
    • 1
    • 2
  • M. V. Rybin
    • 1
    • 2
    Email author
  1. 1.Faculty of Physics and EngineeringITMO UniversitySt. PetersburgRussia
  2. 2.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations