Advertisement

JETP Letters

, Volume 109, Issue 5, pp 303–308 | Cite as

Wave Turbulence of a Liquid Surface in an External Tangential Electric Field

  • E. A. KochurinEmail author
Plasma, Hydro- and Gas Dynamics

Abstract

A direct numerical simulation of the interaction of plane capillary waves on the surface of a liquid dielectric in an external tangential electric field taking into account viscous forces has been performed. It has been shown that the interaction of counterpropagating nonlinear waves can generate a direct energy cascade. In the quasistationary energy dissipation regime, probability density functions for angles of inclination of the boundary tend to a Gaussian distribution and the shape of the boundary becomes complex and chaotic. The spectrum of the surface perturbations in this regime is described by a power law k−5/2. The energy spectrum has the form k−3/2, which coincides with the Iroshnikov-Kraichnan energy spectrum and indicates that the observed wave turbulence of the liquid surface and the weak magnetohydrodynamic turbulence of interacting Alfvén waves have a related nature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. E. Zakharov and N. N. Filonenko, J. Appl. Mech. Tech. Phys. 4, 506 (1967).Google Scholar
  2. 2.
    A. N. Pushkarev and V. E. Zakharov, Phys. Rev. Lett. 76, 3320 (1996).ADSCrossRefGoogle Scholar
  3. 3.
    M. Yu. Brazhnikov, G. V. Kolmakov, A. A. Levchenko, and L. P. Mezhov-Deglin, JETP Lett. 73, 398 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    M. Yu. Brazhnikov, G. V. Kolmakov, A. A. Levchenko, and L. P. Mezhov-Deglin, Europhys. Lett. 58, 510 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    L. Deike, D. Fuster, M. Berhanu, and E. Falcon, Phys. Rev. Lett. 112, 234501 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    O. M. Phillips, J. Fluid Mech. 4, 426 (1958).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    V. E. Zakharov and N. N. Filonenko, Sov. Phys. Dokl. 11, 881 (1967).ADSGoogle Scholar
  8. 8.
    S. Nazarenko and S. Lukaschuk, Annu. Rev. Condens. Matter Phys. 7, 61 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    J. R. Melcher, Phys. Fluids 4, 1348 (1961).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    A. I. Zhakin, Phys. Usp. 56, 141 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    D. Koulova, H. Romat, and C. L. Louste, IEEE Trans. Diel. Electr. Insul. 25, 1716 (2018).CrossRefGoogle Scholar
  12. 12.
    B. Tao and D. L. Guo, Comput. Math. Appl. 67, 627 (2014).MathSciNetCrossRefGoogle Scholar
  13. 13.
    B. Tao, Comput. Math. Appl. 76, 799 (2018).MathSciNetCrossRefGoogle Scholar
  14. 14.
    N. M. Zubarev, Phys. Rev. E 65, 055301 (2002).ADSCrossRefGoogle Scholar
  15. 15.
    N. M. Zubarev, Phys. Fluids 18, 028103 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    T. Gao, P. A. Milewski, D. T. Papageorgiou, and J.-M. Vanden-Broeck, J. Eng. Math. 108, 107 (2018).CrossRefGoogle Scholar
  17. 17.
    Z. Wang, Proc. R. Soc. A 473, 20160817 (2017).ADSCrossRefGoogle Scholar
  18. 18.
    S. Dorbolo and E. Falcon, Phys. Rev. E 83, 046303 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    F. Boyer and E. Falcon, Phys. Rev. Lett. 101, 244502 (2008).ADSCrossRefGoogle Scholar
  20. 20.
    N. M. Zubarev, Phys. Lett. A 333, 284 (2004).ADSCrossRefGoogle Scholar
  21. 21.
    N. M. Zubarev and O. V. Zubareva, Tech. Phys. Lett. 32, 886 (2006).ADSCrossRefGoogle Scholar
  22. 22.
    N. M. Zubarev, JETP Lett. 89, 271 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    N. M. Zubarev and E. A. Kochurin, JETP Lett. 99, 627 (2014).ADSCrossRefGoogle Scholar
  24. 24.
    E. A. Kochurin, J. Appl. Mech. Tech. Phys. 59, 79 (2018).ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    E. A. Kochurin and N. M. Zubarev, IEEE Trans. Diel. Electr. Insul. 25, 1723 (2018).CrossRefGoogle Scholar
  26. 26.
    A. O. Korotkevich, A. I. Dyachenko, and V. E. Zakharov, Phys. D (Amsterdam, Neth.) 321–322, 51 (2016).CrossRefGoogle Scholar
  27. 27.
    E. A. Kochurin and N. M. Zubarev, J. Phys.: Conf. Ser. 946, 012021 (2018).Google Scholar
  28. 28.
    P. Goldreich and S. Sridhar, Astrophys. J. 438, 763 (1995).ADSCrossRefGoogle Scholar
  29. 29.
    P. S. Iroshnikov, Sov. Astron. 7, 566 (1963).ADSMathSciNetGoogle Scholar
  30. 30.
    R. H. Kraichnan, Phys. Fluids 8, 1385 (1965).ADSCrossRefGoogle Scholar
  31. 31.
    P. Goldreich and S. Sridhar, Astrophys. J. 485, 680 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Institute of Electrophysics, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations