In situ Supercontinuum Nanopatterning of Silicon Surface by Femtosecond Laser Super-filaments

  • S. I. KudryashovEmail author
  • L. V. Seleznev
  • A. A. Rudenko
  • A. A. Ionin


We for the first time theoretically predict and experimentally demonstrate that selective, low-threshold excitation and interference between short-wavelength plasmons on silicon surfaces photoexcited by infrared femtosecond laser pulses give rise to appearance of permanent sub-diffraction surface gratings with their periods down to 100 nm, dramatically differing from near-wavelength surface gratings succeeding the common “laser photon-surface polariton” interference. Such selectivity was provided in this work by in situ white-light (supercontinuum) femtosecond source generated in a multi-filamentation regime in a thin water layer atop the silicon surface, supporting high-efficiency excitation and dynamic tracking of the transiently tunable plasmon resonance on silicon surface for its easy, robust and ultimate surface nanopatterning.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer, Berlin (1988).CrossRefGoogle Scholar
  2. 2.
    Nanophotonics with surface plasmons, ed. by V.M. Shalaev and S. Kawata, Elsevier, Amsterdam (2007).Google Scholar
  3. 3.
    S.A. Maier, Plasmonics: Fundamentals and Applications, Springer, Berlin (2007).CrossRefGoogle Scholar
  4. 4.
    A. A. Ionin, S. I. Kudryashov, L.V. Seleznev, D. V. Sinitsyn, and V. I. Emel’yanov, JETP Lett. 97, 121 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    D. H. Reitze, H. Ahn, and M.C. Downer, Phys. Rev. B 45, 2677 (1992).ADSCrossRefGoogle Scholar
  6. 6.
    D. Hulin, M. Combescot, J. Bok, and A. Migus, Phys. Rev. Lett. 52, 1998 (1984).ADSCrossRefGoogle Scholar
  7. 7.
    E.N. Glezer, Y. Siegal, L. Huang, and E. Mazur, Phys. Rev. B 51, 6959 (1995).ADSCrossRefGoogle Scholar
  8. 8.
    K. Sokolowski-Tinten and D. von der Linde, Phys. Rev. B 61, 2643 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    E. V. Golosov, A. A. Ionin, Yu.R. Kolobov, S. I. Kudryashov, А.Е. Ligachev, S. V. Makarov, Yu.N. Novoselov, L.V. Seleznev, D. V. Sinitsyn, and A. R. Sharipov, Phys. Rev. B 83, 115426 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    E.V. Golosov, A.A. Ionin, Yu.R. Kolobov, S. I. Kudryashov, A.E. Ligachev, Yu.N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, JETP 113, 14 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    A. A. Ionin, S. I. Kudryashov, S.V. Makarov, P. N. Saltuganov, L.V. Seleznev, D. V. Sinitsyn, and A.R. Sharipov, JETP Lett. 96, 375 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    T. Apostolova, A.A. Ionin, S.I. Kudryashov, L.V. Seleznev, and D. V. Sinitsyn, Opt. Eng. 51, 121808 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    A. Borowiec and H.K. Haugen, Appl. Phys. Lett. 82, 4462 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    R. Wagner, J. Gottmann, A. Horn, and E.W. Kreutz, Appl. Surf. Sci. 252, 8576 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, ACS Nano 3, 4062 (2009).CrossRefGoogle Scholar
  16. 16.
    E.V. Golosov, V. I. Emel’yanov, A.A. Ionin, Yu.R. Kolobov, S. I. Kudryashov, A.E. Ligachev, Yu.N. Novoselov, L.V. Seleznev, and D.V. Sinitsyn, JETP Lett. 90, 107 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    J. Bonse, J. Krueger, S. Hoehm, and A. Rosenfeld, J. Laser Appl. 24, 042006 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P.M. Fredericks, Nanoscale 4, 7419 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    L.B. Boinovich and A.M. Emelyanenko, Russ. Chem. Rev. 77, 583 (2008).ADSCrossRefGoogle Scholar
  20. 20.
    A. A. Ionin, Y.M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A.E. Ligachev, S. V. Makarov, L. V. Seleznev, D.V. Sinitsyn, A. A. Rudenko, and R.A. Khmelnitsky, Appl. Phys. B 111, 419 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    J. Reif, F. Costache, O. Varlamova, G. Jia, and M. Ratzke, Phys. Stat. Sol. C 6, 681 (2009).Google Scholar
  22. 22.
    V.P. Kandidov, O.G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C.M. Bowden, and S. L. Chin, Appl. Phys. B 77, 149 (2003).ADSCrossRefGoogle Scholar
  23. 23.
    R. H.M. Groeneveld, R. Sprik, and A. Lagendijk, Phys. Rev. B 51, 11433 (1995).ADSCrossRefGoogle Scholar
  24. 24.
    R. J. Bell, R.W. Alexander, Jr., W. F. Parks, and G. Kovener, Opt. Commun. 8, 147 (1973).ADSCrossRefGoogle Scholar
  25. 25.
    S.A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. N. Seminogov, Sov. Phys. Usp. 28, 1084 (1985).ADSCrossRefGoogle Scholar
  26. 26.
    K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, Phys. Rev. B 82, 165417 (2010).ADSCrossRefGoogle Scholar
  27. 27.
    J. Bonse, S. Hoehm, A. Rosenfeld, and J. Krueger, Appl. Phys. A 110, 547 (2013).ADSCrossRefGoogle Scholar
  28. 28.
    Russian patent “Method and apparatus for subdiffractive one- and two-dimensional nanopatterning of materials surfaces”, RU #2534454, priority from 12.04.13.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • S. I. Kudryashov
    • 1
    • 2
    Email author
  • L. V. Seleznev
    • 1
  • A. A. Rudenko
    • 1
  • A. A. Ionin
    • 1
  1. 1.Lebedev Physical InstituteMoscowRussia
  2. 2.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations