Vapor-Phase Synthesis and Magnetoresistance of (Cd1−xZnx)3As2 (x = 0.007) Single Crystals

  • A. V. Kochura
  • L. N. OveshnikovEmail author
  • A. P. Kuzmenko
  • A. B. Davydov
  • S. Yu. Gavrilkin
  • V. S. Zakhvalinskii
  • V. A. Kulbachinskii
  • N. A. Khokhlov
  • B. A. Aronzon


We report a highly anisotropic magnetoresistance of (Cd0.993Zn0.007)3As2 single crystals, which were synthesized by the vapor-phase growth. Scanning electron microscopy and electron diffraction data confirm the high crystalline quality of obtained samples. Studied samples exhibit specific features such as octahedral nuclei growth and step-like morphology of the surface formed by {112} planes. The giant anisotropic magnetoresistance and Shubnikov–de Haas oscillations were observed at low temperatures. The results suggest the existence of the Dirac semimetal phase in (Cd1−xZnx)3As2 solid solution with low zinc content. Thus, the observed magnetoresistance anisotropy is partially attributed to the chiral anomaly.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys. 90(1), 015001 (2018).ADSCrossRefGoogle Scholar
  2. 2.
    L.P. He, X.C. Hong, J.K. Dong, J. Pan, Z. Zhang, J. Zhang, and S.Y. Li, Phys. Rev. Lett. 113(24), 246402 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    J. Feng, Y. Pang, D. Wu, Z. Wang, H. Weng, J. Li, X. Dai, Z. Fang, Y. Shi, and L. Lu, Phys. Rev. B 92(8), 081306(R) (2015).Google Scholar
  4. 4.
    K. Zhang, H. Pan, M. Zhang, Z. Wei, M. Gao, F. Song, X. Wang, and R. Zhang, RSC Advances 7(29), 17689 (2017).CrossRefGoogle Scholar
  5. 5.
    C.-Z. Li, R. Zhu, X. Ke, J.-M. Zhang, L.X. Wang, L. Zhang, Z.-M. Liao, and D.-P. Yu, Cryst. Growth Design 15(7), 3264 (2015).CrossRefGoogle Scholar
  6. 6.
    A. V. Galeeva, I. V. Krylov, K.A. Drozdov, A.F. Knjazev, A. V. Kochura, A.P. Kuzmenko, V. S. Zakhvalinskii, S.N. Danilov, L. I. Ryabova, and D.R. Khokhlov, Belstein Journal of Nanotechnology 8(1), 167 (2017).CrossRefGoogle Scholar
  7. 7.
    Q. Wang, C.-Z. Li, S. Ge, J.-G. Li, W. Lu, J. Lai, X. Liu, J. Ma, D.-P. Yu, Z.-M. Liao, and D. Sun, Nano Lett. 17(2), 834 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    J. Walowski and M. Munzenberg, J. Appl. Phys. 120(14), 140901 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    E. K. Arushanov, Prog. Crystal. Growth. Charact. 3(2–3), 211 (1981).Google Scholar
  10. 10.
    G. F. Volodina, V. S. Zakhvalinskii, and V. Kh. Kravtsov, Crystallography Reports 58(4), 563 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    E. K. Arushanov, Prog. Crystal. Growth. Charact 25(3), 131 (1992).CrossRefGoogle Scholar
  12. 12.
    A. I. Belogorokhov, I. S. Zakharov, A. F. Knyazev, and A.V. Kochura, Inorganic Materials 36(7), 653 (2000).CrossRefGoogle Scholar
  13. 13.
    T. Liang, Q. Gibson, M.N. Ali, M. Liu, R. J. Cava, and N.P. Ong, Nature Materials 14(3), 280 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    D.R. Lovett, Semimetals and Narrow Band Semiconductors, Pion Limited, London (1977), 256 p.Google Scholar
  15. 15.
    E. K. Arushanov, A.F. Knyazev, A. N. Nateprov, and S. I. Radautsan, Soviet Physics Semiconductors–USSR 17(7), 759 (1983).Google Scholar
  16. 16.
    H. Lu, X. Zhang, Y. Bian, and S. Jia, Sci. Rep. 7(1), 3148 (2017).ADSCrossRefGoogle Scholar
  17. 17.
    R. Sankar, N. Neupane, S.-Y. Xu et al. (Collaboration), Sci. Rep. 5, 12966 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    M.N. Ali, Q. Gibson, S. Jeon, B. B. Zhou, A. Yazdani, and R. J. Cava, Inorganic Chemistry 53, 4062 (2014).CrossRefGoogle Scholar
  19. 19.
    P. Schonher and T. Hesjedal, Appl. Phys. Lett. 106(1), 013115 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    K. Zhang, H. Pan, M. Zhang, Z. Wei, M. Gao, F. Song, X. Wang, and R. Zhang, RSC Advances 7(29), 17689 (2017).CrossRefGoogle Scholar
  21. 21.
    P. Cheng, C. Zhang, Y. Liu, X. Yuan, F. Song, Q. Sun, P. Zhou, D.W. Zhang, and F. Xiu, New J. Phys 18(8), 083003 (2016).ADSCrossRefGoogle Scholar
  22. 22.
    A. V. Kochura, S. F. Marenkin, A. I. Ril, A. L. Zheludkevich, P.V. Abakumov, A.F. Knjazev, and M.B. Dobromyslov, J. Nano Electron. Phys. 7(4), 04079 (2015).Google Scholar
  23. 23.
    A. Sharafeev, V. Gnezdilov, R. Sankar, F.C. Chou, and P. Lemmens, Phys. Rev. B 95(23), 235148 (2017).ADSCrossRefGoogle Scholar
  24. 24.
    A. A. Abrikosov, J. Phys. A: Math. Gen. 36(35), 9119 (2003).ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    M. M. Parish and P.B. Littlewood, Nature 426, 162 (2003).ADSCrossRefGoogle Scholar
  26. 26.
    Y. Zhao, H. Liu, C. Zhang, H. Wang, J. Wang, Z. Lin, Y. Xing, H. Lu, J. Liu, Y. Wang, S.M. Brombosz, Z. Xiao, S. Jia, X. C. Xie, and J. Wang, Phys. Rev. X 5(3), 031037 (2015).Google Scholar
  27. 27.
    A. Narayanan, M.D. Watson, S. F. Blake, N. Bruyant, L. Drigo, Y. L. Chen, D. Prabhakaran, B. Yan, C. Felser, T. Kong, P.C. Canfield, and A. I. Coldea, Phys. Rev. Lett. 114(11), 117201 (2015).ADSCrossRefGoogle Scholar
  28. 28.
    H. Li, H. He, H.-Z. Lu, H. Zhang, H. Liu, R. Ma, Z. Fan, S.-Q. Shen, and J. Wang, Nature Comm. 7, 10301 (2016).ADSCrossRefGoogle Scholar
  29. 29.
    D. Shoenberg, Magnetic Oscillations in Metals, Cambridge University Press, Cambridge (1984), 596 p.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • A. V. Kochura
    • 1
  • L. N. Oveshnikov
    • 2
    • 3
    Email author
  • A. P. Kuzmenko
    • 1
  • A. B. Davydov
    • 3
  • S. Yu. Gavrilkin
    • 3
  • V. S. Zakhvalinskii
    • 4
  • V. A. Kulbachinskii
    • 2
    • 5
    • 6
  • N. A. Khokhlov
    • 1
  • B. A. Aronzon
    • 2
    • 3
  1. 1.Southwest State UniversityKurskRussia
  2. 2.National Research Center “Kurchatov Institute”MoscowRussia
  3. 3.P.N. Lebedev Physical InstituteMoscowRussia
  4. 4.Belgorod National Research UniversityBelgorodRussia
  5. 5.Lomonosov Moscow State UniversityMoscowRussia
  6. 6.Moscow Institute of Physics and Technology (State University)DolgoprudnyRussia

Personalised recommendations