Enhanced Second-Harmonic Generation with Structured Light in AlGaAs Nanoparticles Governed by Magnetic Response

  • E. V. Melik-Gaykazyan
  • K. L. Koshelev
  • J.-H. Choi
  • S. S. Kruk
  • H.-G. Park
  • A. A. Fedyanin
  • Y. S. KivsharEmail author


We employ structured light for the second-harmonic generation from subwavelength AlGaAs nanoparticles that support both electric and magnetic multipolar Mie resonances. The vectorial structure of the pump beam allows addressing selectively Mie-resonant modes and control the strength of the generated nonlinear fields. We observe experimentally the enhancement of the second-harmonic generation for the azimuthally polarized vector beams near magnetic dipole resonance, and match our observations with the numerical decomposion of the Mie-type multipoles for the fundamental and generated second-harmonic fields.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Kruk and Yu. S. Kivshar, ACS Photonics 4, 2638 (2017).CrossRefGoogle Scholar
  2. 2.
    Y. S. Kivshar, National Science Review 5, 144 (2018).CrossRefGoogle Scholar
  3. 3.
    N. Zheludev and Yu. S. Kivshar, Nature Mater. 11, 917924 (2012).CrossRefGoogle Scholar
  4. 4.
    M. R. Shcherbakov, D.N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E.V. Melik-Gaykazyan, M. Decker, A.A. Ezhov, A.E. Miroshnichenko, I. Brener, A.A. Fedyanin, and Y. S. Kivshar, Nano Lett. 14, 6488 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    E.V. Melik-Gaykazyan, M.R. Shcherbakov, A. S. Shorokhov, I. Staude, I. Brener, D. N. Neshev, Yu. S. Kivshar, and A.A. Fedyanin, Phil. Trans. R. Soc. A 375, 20160281 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    D. Smirnova and Y. S. Kivshar, Optica 3, 1241 (2016).CrossRefGoogle Scholar
  7. 7.
    S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, D.A. Smirnova, L. Wang, H.H. Tan, C. Jagadish, D. N. Neshev, and Y. S. Kivshar, Nano Lett. 17, 3914 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    G. Bautista and M. Kauranen, ACS Photonics 3, 1351 (2016).CrossRefGoogle Scholar
  9. 9.
    E.V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Zangeneh Kamali, A. Lamprianidis, A.E. Miroshnichenko, A.A. Fedyanin, D. N. Neshev, and Y. S. Kivshar, ACS Photonics 5, 728 (2018).CrossRefGoogle Scholar
  10. 10.
    A. Ahmadivand, R. Sinha, and N. Pala, Optics & Laser Technology 90, 65 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    G. Bautista, C. Dreser, X. Zhang, D.P. Kern, M. Kauranen, and M. Fleischer, Nano Lett. 18, 2571 (2018).ADSCrossRefGoogle Scholar
  12. 12. Scholar
  13. 13.
    P. C. Chaumet, J. Opt. Soc. Am. A 23, 3197 (2006).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    T. Das, P.P. Iyer, R.A. DeCrescent, and J.A. Schuller, Phys. Rev. B 92, 241110 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    T. Das and J.A. Schuller, Phys. Rev. B 95, 201111 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    R.W. Boyd, Nonlinear Optics, Elsevier, San Diego (2003).Google Scholar
  17. 17.
    I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, J. Opt. Soc. Amer. B 14, 2268 (1997).ADSCrossRefGoogle Scholar
  18. 18.
    P. Grahn, A. Shevchenko, and M. Kaivola, New J. Phys. 14, 093033 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D.N. Neshev, and Y.S. Kivshar, APL Photonics 1, 030801 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • E. V. Melik-Gaykazyan
    • 1
    • 2
  • K. L. Koshelev
    • 1
    • 3
  • J.-H. Choi
    • 4
  • S. S. Kruk
    • 2
  • H.-G. Park
    • 4
  • A. A. Fedyanin
    • 1
  • Y. S. Kivshar
    • 2
    Email author
  1. 1.Faculty of PhysicsLomonosov Moscow State UniversityMoscowRussia
  2. 2.Nonlinear Physics CentreAustralian National UniversityCanberraAustralia
  3. 3.Information TechnologiesMechanics and Optics UniversitySt. PetersburgRussia
  4. 4.Department of PhysicsKorea UniversitySeoulRepublic of Korea

Personalised recommendations