Skip to main content
Log in

Self-Detection of Ultrasonic Standing Waves and Anomaly of Young’s Modulus at Uniaxial Extension Whiskers of the Quasi-One-Dimensional Conductor TaS3

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Mechanical vibrations of whiskers of the quasi-one-dimensional conductor TaS3 that appear at the application of an ac voltage above the threshold value for the sliding of a charge density wave have been studied by the heterodyning method. It has been shown that the highest frequency modes correspond to the excitation of longitudinal ultrasonic standing waves. A sharp minimum of the frequencies of ultrasonic resonances at a critical tension of εc ≈ 0.7% has been detected in the region of transition of the charge density wave to a new state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Monceau, Adv. Phys. 61, 325 (2012).

    Article  ADS  Google Scholar 

  2. J. W. Brill, in Handbook of Elastic Properties of Solids, Liquids, and Gases, Vol. 2: Elastic Properties of Solids: Theory, Elements and Compounds, Novel Materials, Alloys, and Building Materials, Ed. by M. Levy (Academic, San Diego, 2001), Chap. 10, p. 143.

    Google Scholar 

  3. S. Hoen, B. Burk, A. Zettl, and M. Inui, Phys. Rev. B 46, 1874 (1991).

    Article  ADS  Google Scholar 

  4. V. Ya. Pokrovskii, S. G. Zybtsev, M. V. Nikitin, I. G. Gorlova, V. F. Nasretdinova, and S. V. Zaitsev-Zotov, Phys. Usp. 56, 29 (2013).

    Article  ADS  Google Scholar 

  5. V. Ya. Pokrovskii, S. G. Zybtsev, and I. G. Gorlova, Phys. Rev. Lett. 98, 206404 (2007).

    Article  ADS  Google Scholar 

  6. V. Ya. Pokrovskii, S. G. Zybtsev, V. B. Loginov, V. N. Timofeev, D. V. Kolesov, I. V. Yaminsky, and I. G. Gorlova, Phys. B (Amsterdam, Neth.) 404, 437 (2009).

    Article  ADS  Google Scholar 

  7. J. Nichols, D. Dominko, L. Ladino, J. Zhou, and J. W. Brill, Phys. Rev. B 79, 241110(R) (2009); Phys. Rev. B 80, 039903(E) (2009).

    Google Scholar 

  8. M. V. Nikitin, V. Ya. Pokrovskii, and S. G. Zybtsev, Zh. Radioelektron., No. 2 (2013). http://jre.cplire.ru/jre/feb13/8/text.pdf.

    Google Scholar 

  9. V. Ya. Pokrovskii, M. V. Nikitin, and S. G. Zybtsev, Phys. B (Amsterdam, Neth.) 460, 39 (2015).

    Article  ADS  Google Scholar 

  10. M. V. Nikitin, V. Ya. Pokrovskii, S. G. Zybtsev, A. M. Zhikharev, and P. V. Lega, J. Commun. Technol. Electron. 63, 226 (2018).

    Article  Google Scholar 

  11. V. Sazonova, Y. Yaish, Y. Ustunel, D. Roundy, T. A. Arias, and P. L. McEuen, Nature (London, U.K.) 431, 284 (2004).

    Article  ADS  Google Scholar 

  12. V. Gouttenoire, T. Barois, S. Perisanu, J. L. Leclercq, S. T. Purcell, P. Vincent, and A. Ayari, Small 6, 1060 (2010).

    Article  Google Scholar 

  13. Sh. Sengupta, N. Samudrala, V. Singh, A. Thamizhavel, P. B. Littlewood, V. Tripathi, and M. M. Deshmukh, Phys. Rev. Lett. 110, 166403 (2013).

    Article  ADS  Google Scholar 

  14. M. V. Nikitin, V. Ya. Pokrovskii, and S. G. Zybtsev, J. Commun. Technol. Electron. 63, 1217 (2018).

    Article  Google Scholar 

  15. K. Das, M. Chung, M. J. Skove, and G. X. Tessema, Phys. Rev. B 52, 7915 (1995).

    Article  ADS  Google Scholar 

  16. S. G. Zybtsev and V. Ya. Pokrovskii, Phys. B (Amsterdam, Neth.) 460, 34 (2015).

    Article  ADS  Google Scholar 

  17. S. G. Zybtsev and V. Ya. Pokrovskii, Phys. Rev. B 94, 115140 (2016).

    Article  ADS  Google Scholar 

  18. S. G. Zybtsev, V. Ya. Pokrovskii, O. M. Zhigalina, D. N. Khmelenin, D. Staresinic, S. Sturm, and E. Tchernychova, J. Exp. Theor. Phys. 124, 665 (2017).

    Article  ADS  Google Scholar 

  19. M. H. Jericho and A. M. Simpson, Phys. Rev. B 34, 1116 (1986).

    Article  ADS  Google Scholar 

  20. W. Ramberg and W. R. Osgood, Technical Note No. 902 (Natl. Advisory Committee Aeronautics, Washington DC, 1943); https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930081614_1993081614.pdf, https://en.wikipedia. org/wiki/Ramberg%E2%80%93Osgood_relationship.

    Google Scholar 

  21. J. Demsar, K. Biljaković, and D. Mihailovic, Phys. Rev. Lett. 83, 800 (1999).

    Article  ADS  Google Scholar 

  22. V. Ya. Pokrovskii and S. G. Zybtsev, arXiv:0708.2694v1[cond-mat.str-el].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Nikitin.

Additional information

Russian Text © M.V. Nikitin, V.Ya. Pokrovskii, S.G. Zybtsev, A.V. Frolov, 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 109, No. 1, pp. 54–60.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, M.V., Pokrovskii, V.Y., Zybtsev, S.G. et al. Self-Detection of Ultrasonic Standing Waves and Anomaly of Young’s Modulus at Uniaxial Extension Whiskers of the Quasi-One-Dimensional Conductor TaS3. Jetp Lett. 109, 51–56 (2019). https://doi.org/10.1134/S0021364019010107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019010107

Navigation