Negative Temperature for Negative Lapse Function

  • G. E. Volovik


Fermion dynamics distinguishes spacetimes having the same metric gμν, but different tetrads eμa, and in particular, it distinguishes a lapse with negative sign, N < 0 (M. Christodoulou, A. Riello, and C. Rovelli, Int. J. Mod. Phys. D 21, 1242014 (2012)). Here we show that the quasiequilibrium thermodynamic state may exist, in which the region with N < 0 has negative local temperature T (r) < 0, while the global Tolman temperature T0 remains positive. For bosons, only N2 matters. However, if bosons are composite, they may inherit the negative T (r) from the fermions, and thus they may distinguish the spacetimes with positive and negative lapse functions via thermodynamics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Tolman, Relativity, Thermodynamics, and Cosmology, Oxford University Press, Oxford (1934).zbMATHGoogle Scholar
  2. 2.
    J. Santiago and M. Visser, arXiv:1805.05583.Google Scholar
  3. 3.
    G. E. Volovik, The Universe in a Helium Droplet, Clarendon Press, Oxford (2003).zbMATHGoogle Scholar
  4. 4.
    R. Sh. Askhadullin, V.V. Dmitriev, P.N. Martynov, A. A. Osipov, A.A. Senin, and A. N. Yudin, JETP Lett. 100, 662 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    V.V. Dmitriev, A.A. Senin, A.A. Soldatov, and A. N. Yudin, Phys. Rev. Lett. 115, 165304 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    J. Nissinen and G. E. Volovik, Phys. Rev. D 97, 025018 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    D. Diakonov, arXiv:1109.0091.Google Scholar
  8. 8.
    A. A. Vladimirov and D. Diakonov, Phys. Rev. D 86, 104019 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    C. Rovelli and E. Wilson-Ewing, Phys. Rev. D 86, 064002 (2012); arXiv:1205.0733.ADSCrossRefGoogle Scholar
  10. 10.
    M. Christodoulou, A. Riello, and C. Rovelli, Int. J. Mod. Phys. D 21, 1242014 (2012); arXiv:1206.3903.ADSCrossRefGoogle Scholar
  11. 11.
    S. Braun, J. P. Ronzheimer, M. Schreiber, S. S. Hodgman, T. Rom, I. Bloch, and U. Schneider, Science 339, 52–55 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    J. Nissinen and G. E. Volovik, Pisma v ZhETF 105, 442 (2017) [JETP Lett. 105, 447 (2017)]; arXiv:1702.04624.Google Scholar
  13. 13.
    N. L. Balazs, Astrophys. J. 128, 398 (1958).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    A.A. Starobinsky, Sov. Astron. Lett. 7, 36 (1981) [Pisma v Astron. Zh. 7, 67, (1981)].ADSGoogle Scholar
  15. 15.
    C.D. Froggatt and H. B. Nielsen, Origin of Symmetry, World Scientific, Singapore (1991).CrossRefGoogle Scholar
  16. 16.
    P. Hořava, Phys. Rev. Lett. 95, 016405 (2005).ADSCrossRefGoogle Scholar
  17. 17.
    G.E. Volovik and M. A. Zubkov, Nucl. Phys. B 881, 514 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    G. E. Volovik, JETP Lett. 90, 697 (2009); arXiv:0904.1965.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Low Temperature LaboratoryAalto University, School of Science and TechnologyAaltoFinland
  2. 2.Landau Institute for Theoretical Physics RASMoscowRussia

Personalised recommendations