Advertisement

Dependence of Five and Six-loop Estimated QCD Corrections to the Relation between Pole and Running Masses of Heavy Quarks on the Number of Light Flavours

  • A. L. Kataev
  • V. S. Molokoedov
Article
  • 1 Downloads

Abstract

In this paper various theoretical approaches are used to define the dependence of the estimated \(\mathcal{O}(\alpha_s^5)\) and \(\mathcal{O}(\alpha_s^6)\)-corrections to the quantum chromodynamics relation between pole and \(\overline{\rm{MS}}\) running masses of heavy quarks on the number of light flavours. It is found that recently studied asymptotic formula for the coefficients of this relation, based on the infared-renormalon method, does not reproduce sign-alternating structure in the flavour-dependence of the five and six-loop corrections, which holds in three other used by us approaches.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Tarrach, Nucl. Phys. B 183, 384 (1981).ADSCrossRefGoogle Scholar
  2. 2.
    N. Gray, D. J. Broadhurst, W. Grafe, and K. Schilcher, Z. Phys. C 48, 673 (1990).ADSCrossRefGoogle Scholar
  3. 3.
    L.V. Avdeev and M.Y. Kalmykov, Nucl. Phys. B 502, 419 (1997).ADSCrossRefGoogle Scholar
  4. 4.
    J. Fleischer, F. Jegerlehner, O.V. Tarasov, and O. L. Veretin, Nucl. Phys. B 539, 671 (1999) [Erratum: J. Fleischer, F. Jegerlehner, O.V. Tarasov, and O. L. Veretin, Nucl. Phys. B 571, 511 (2000)].ADSCrossRefGoogle Scholar
  5. 5.
    K. Melnikov and T. van Ritbergen, Phys. Lett. B 482, 99 (2000).ADSCrossRefGoogle Scholar
  6. 6.
    K.G. Chetyrkin and M. Steinhauser, Nucl. Phys. B 573, 617 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    S. Bekavac, A. Grozin, D. Seidel, and M. Steinhauser, JHEP 0710, 006 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    R. Lee, P. Marquard, A.V. Smirnov, V.A. Smirnov, and M. Steinhauser, JHEP 1303, 162 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    P. Ball, M. Beneke, and V. M. Braun, Nucl. Phys. B 452, 563 (1995).ADSCrossRefGoogle Scholar
  10. 10.
    P. Marquard, A.V. Smirnov, V.A. Smirnov, and M. Steinhauser, Phys. Rev. Lett. 114(14), 142002 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    A.L. Kataev and V. S. Molokoedov, Eur. Phys. J. Plus 131(8), 271 (2016).CrossRefGoogle Scholar
  12. 12.
    P. Marquard, A.V. Smirnov, V.A. Smirnov, M. Steinhauser, and D. Wellmann, Phys. Rev. D 94(7), 074025 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    A.L. Kataev and V. S. Molokoedov, arXiv:1807.05406 [hep-ph].Google Scholar
  14. 14.
    I. I.Y. Bigi, M.A. Shifman, N.G. Uraltsev, and A. I. Vainshtein, Phys. Rev. D 50, 223 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    M. Beneke and V.M. Braun, Nucl. Phys. B 426, 301 (1994).ADSCrossRefGoogle Scholar
  16. 16.
    G. Grunberg, Phys. Rev. D 29, 2315 (1984).ADSCrossRefGoogle Scholar
  17. 17.
    A. L. Kataev and V.V. Starshenko, Mod. Phys. Lett. A 10, 235 (1995).ADSCrossRefGoogle Scholar
  18. 18.
    K.G. Chetyrkin, B. A. Kniehl, and A. Sirlin, Phys. Lett. B 402, 359 (1997).ADSCrossRefGoogle Scholar
  19. 19.
    A. L. Kataev and V.T. Kim, Phys. Part. Nucl. 41, 946 (2010).CrossRefGoogle Scholar
  20. 20.
    M. Beneke, Phys. Lett. B 344, 341 (1995).ADSCrossRefGoogle Scholar
  21. 21.
    M. Beneke, Phys. Rept. 317, 1 (1999).ADSCrossRefGoogle Scholar
  22. 22.
    A. Pineda, JHEP 0106, 022 (2001).ADSCrossRefGoogle Scholar
  23. 23.
    M. Beneke, P. Marquard, P. Nason, and M. Steinhauser, Phys. Lett. B 775, 63 (2017).ADSCrossRefGoogle Scholar
  24. 24.
    F. Campanario, A.G. Grozin, and T. Mannel, Nucl. Phys. B 663, 280 (2003) [Erratum: F. Campanario, A.G. Grozin, and T. Mannel, Nucl. Phys. B 670, 331 (2003)].ADSCrossRefGoogle Scholar
  25. 25.
    C. Ayala, G. Cvetič, and A. Pineda, JHEP 1409, 045 (2014).ADSCrossRefGoogle Scholar
  26. 26.
    D. J. Broadhurst, A. L. Kataev, and C. J. Maxwell, Nucl. Phys. B 592, 247 (2001).ADSCrossRefGoogle Scholar
  27. 27.
    V. Mateu and P. G. Ortega, JHEP 1801, 122 (2018).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute for Nuclear Research RASMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyRussia
  3. 3.L.D. Landau Institute for Theoretical Physics RASChernogolovkaRussia

Personalised recommendations