Advertisement

Asymmetric Features in the Resistivity of clean Quasi-one-dimensional Systems: Fano Resonances or non-Born Effects?

  • A. S. IoselevichEmail author
  • N. S. PeshcherenkoEmail author
Article
  • 1 Downloads

Abstract

We show that experimentally observed complex line shapes of smeared Van Hove singularities in the resistivity of a quasi-one-dimensional system may be due to non-Born effects in scattering. At low concentration of impurities n < nc ∝ |λ| with respect to scattering amplitude λ the non-Born effects are essential if the Fermi level is sufficiently close to singularity. The structure of the line shape depends on the sign of λ: for repulsion (λ > 0) it is “plateau–minimum–maximum–plateau”, while for attraction (λ < 0) it is “plateau–maximum–minimum–maximum–plateau”. In contrast with Fano-resonance scenario, complex structure of the line shape arises even in the absence of a resonant level.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Zhang, D.A. Dikin, R. S. Ruoff, and V. Chandrasekhar, Europhys. Lett. 68, 713 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    B. Babić and C. Schönenberger, Phys. Rev. B 70, 195408 (2004).ADSCrossRefGoogle Scholar
  3. 3.
    J. Kim, J.R. Kim, J.-O. Lee, J.W. Park, H. M. So, N. Kim, K. Kang, K.H. Yoo, and J. J. Kim, Phys. Rev. Lett. 90, 166403 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    W. Yi, L. Lu, H. Hu, Z.W. Pan, and S. S. Xie, Phys. Rev. Lett. 91, 076801 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    P.Y. Yu and M. Cardona, Fundamentals of Semiconductors. Physics and Material Properties, Springer, Heidelberg, Dordrecht, London, N.Y. (2010), ch. 6.2.CrossRefzbMATHGoogle Scholar
  6. 6.
    S. Hügle and R. Egger, Phys. Rev. B 66, 193311 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    A.E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    U. Fano, Phys. Rev. 124, 1866 (1961).ADSCrossRefGoogle Scholar
  9. 9.
    A. A. Abrikosov, L. P. Gorkov, and I. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics, Pergamon, N.Y. (1965).Google Scholar
  10. 10.
    R. I. Elliott, I.A. Krumhansl, and P. L. Leath, Rev. Mod. Phys. 45, 465 (1974).ADSCrossRefGoogle Scholar
  11. 11.
    P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).ADSCrossRefGoogle Scholar
  12. 12.
    L. D. Landau and E.M. Lifshitz, Course in Theoretical Physics, Pergamon, Oxford (1981), v. 3 (Quantum mechanics. Nonrelativistic theory).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Condensed-matter physics laboratoryNational Research University Higher School of EconomicsMoscowRussia
  2. 2.L.D. Landau Institute for Theoretical PhysicsMoscowRussia
  3. 3.Skolkovo Institute of Science and TechnologyMoscowRussia
  4. 4.Moscow Institute of Physics and TechnologyMoscowRussia

Personalised recommendations