Advertisement

JETP Letters

, Volume 108, Issue 10, pp 705–709 | Cite as

Exact Computation of the Special Geometry for Calabi–Yau Hypersurfaces of Fermat Type

  • K. AleshkinEmail author
  • A. Belavin
Methods of Theoretical Physics

Abstract

We continue to develop our method for effectively computing the special Kähler geometry on the moduli space of Calabi–Yau manifolds. We generalize it to all polynomial deformations of Fermat hypersurfaces.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11448_2018_1893_MOESM1_ESM.pdf (370 kb)
Supplementary material, approximately 370 KB.

References

  1. 1.
    P. Candelas, P. S. Green, and T. Hubsch, Phys. Rev. Lett. 62, 1956 (1989).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    P. Candelas, P. S. Green, and T. Hubsch, Nucl. Phys. B 330, 49 (1990).ADSCrossRefGoogle Scholar
  3. 3.
    S. Cecotti and C. Vafa, Nucl. Phys. B 367, 359 (1991).ADSCrossRefGoogle Scholar
  4. 4.
    M. Cicoli, D. Klevers, S. Krippendorf, C. Mayrhofer, F. Quevedo, and R. Valandro, J. High Energy Phys. 05, 001 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, Commun. Math. Phys. 165, 311 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    R. Blumenhagen, D. Klawer, L. Schlechter, and F. Wolf, arXiv: 1803.04989[hep-th] (2018).Google Scholar
  7. 7.
    R. Blumenhagen, in Proceedings of the 17th Hellenic School and Workshops on Elementary Particle Physics and Gravity CORFU2017, Corfu, Greece, Sept. 2–28, 2017 (2018); arXiv: 1804.10504 [hep-th]. https://inspirehep. net/record/1670638/files/1804.10504.pdf.Google Scholar
  8. 8.
    P. Candelas, X. C. De La Ossa, P. S. Green, and L. Parkes, Nucl. Phys. B 359, 21 (1991); AMS/IP Stud. Adv. Math. 9, 31 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    A. Klemm and S. Theisen, Theor. Math. Phys. 95, 583 (1993); arXiv: hep-th/9210142.CrossRefGoogle Scholar
  10. 10.
    P. Candelas, A. Font, S. H. Katz, and D. R. Morrison, Nucl. Phys. B 429, 626 (1994); arXiv: hep-th/9403187.ADSCrossRefGoogle Scholar
  11. 11.
    P. Candelas, X. De La Ossa, A. Font, S. H. Katz, and D. R. Morrison, Nucl. Phys. B 416, 481 (1994); AMS/IP Stud. Adv. Math. 1, 483 (1996); arXiv: hepth/9308083.ADSCrossRefGoogle Scholar
  12. 12.
    H. Jockers, V. Kumar, J. M. Lapan, D. R. Morrison, and M. Romo, Commun. Math. Phys. 325, 1139 (2014); arXiv: 1208.6244 [hep-th].ADSCrossRefGoogle Scholar
  13. 13.
    F. Benini and S. Cremonesi, Commun. Math. Phys. 334, 1483 (2015); arXiv: 1206.2356 [hep-th].ADSCrossRefGoogle Scholar
  14. 14.
    S. M. Kuzenko and J. Novak, J. High Energy Phys. 05, 093 (2013); arXiv: 1206.2606 [hep-th].ADSGoogle Scholar
  15. 15.
    K. Aleshkin and A. Belavin, J. Phys. A 51, 055403 (2018); arXiv:1706.05342 [hep-th].ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    K. Aleshkin and A. Belavin, Phys. Lett. B 776, 139 (2018); arXiv:1708.08362 [hep-th].ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    K. Aleshkin and A. Belavin, J. High Energy Phys. 03, 018 (2018); arXiv: 1710.11609 [hep-th].ADSCrossRefGoogle Scholar
  18. 18.
    V. Arnold, A. Varchenko, and S. Gusein-Zade, Singularities of Differentiable Maps (Nauka, Moscow, 1982; Birkhäuser, Boston, 1985).zbMATHGoogle Scholar
  19. 19.
    P. Candelas, Nucl. Phys. B 298, 458 (1988).ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    S. Cecotti, Int. J. Mod. Phys. A 6, 1749 (1991).ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Chiodo, H. Iritani, and Y. Ruan, arXiv: 1201.0813 [math.AG].Google Scholar
  22. 22.
    H. Iritani, T. Milanov, Y. Ruan, and Y. Shen, arXiv:1605.08885 [math.AG].Google Scholar
  23. 23.
    A. Chiodo, H. Iritani, and Y. Ruan, arXiv: 1201.0813 [math.AG] (2012).Google Scholar
  24. 24.
    P. Berglund and T. Hubsch, Nucl. Phys. B 393, 377 (1993); AMS/IP Stud. Adv. Math. 9, 327 (1998); arXiv: hep-th/9201014[hep-th].ADSCrossRefGoogle Scholar
  25. 25.
    P. Berglund and T. Hubsch, SciPost Phys. 4, 009 (2018); arXiv: 1611.10300 [hep-th].ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovkaRussia
  2. 2.International School of Advanced Studies (SISSA)TriesteItaly
  3. 3.Moscow Institute of Physics and Technology (State University)DolgoprudnyiRussia
  4. 4.Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations