Advertisement

JETP Letters

, Volume 108, Issue 9, pp 596–600 | Cite as

Proton Conductivity of Water in Mesoporous Materials

  • M. I. Ryzhkin
  • I. A. RyzhkinEmail author
  • A. M. Kashin
  • E. A. Galitskaya
  • V. V. Sinitsyn
Condensed Matter
  • 5 Downloads

Abstract

A model explaining a high proton conductivity of water in mesoporous materials has been proposed. The model is based on the theory of an intermediate phase of water with an ordered oxygen lattice and a destroyed proton lattice and involves various types of interaction of water molecules with an interface. The model is in fact based on an analogy of the interface and a liquid-like surface layer of ice. Possible methods for increasing the proton conductivity, experiments for testing the proposed model, and application of the results to the creation of efficient proton-exchange membranes have been discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, Chem. Rev. 104, 4587 (2004).CrossRefGoogle Scholar
  2. 2.
    M. Faraday, Philos. Mag. 17, 162 (1859).CrossRefGoogle Scholar
  3. 3.
    J. Thomson, Proc. R. Soc., Ser. A 11, 198 (1861).Google Scholar
  4. 4.
    N. Maeno and H. Nishimura, J. Glaciol. 21, 193 (1978).ADSCrossRefGoogle Scholar
  5. 5.
    I. A. Ryzhkin, M. I. Ryzhkin, V. V. Sinitsyn, and A. V. Klyuev, JETP Lett. 106, 760 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    M. I. Ryzhkin, A. V. Klyuev, V. V. Sinitsyn, and I. A. Ryzhkin, JETP Lett. 104, 248 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    C. J. T. de Grotthuss, Ann. Chim. 58, 54 (1806).Google Scholar
  8. 8.
    C. Jaccard, Phys. Condens. Mater. 3, 99 (1964).ADSGoogle Scholar
  9. 9.
    J. D. Bernal and R. H. Fowler, J. Chem. Phys. 1, 515 (1933).ADSCrossRefGoogle Scholar
  10. 10.
    H. Granicher, Z. Kristallogr. 110, 432 (1958).CrossRefGoogle Scholar
  11. 11.
    V. F. Petrenko and R. W. Whitworth, Physics of Ice (Oxford Univ. Press, Oxford, 1999).Google Scholar
  12. 12.
    A. V. Klyuev, I. A. Ryzhkin, and M. I. Ryzhkin, JETP Lett. 100, 604 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    V. G. Artemov, I. A. Ryzhkin, and V. V. Sinitsyn, JETP Lett. 102, 41 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    J. W. Cahn and J. E. Hilliard, J. Chem. Phys. A 28, 258 (1958).ADSCrossRefGoogle Scholar
  15. 15.
    V. F. Petrenko and I. A. Ryzhkin, J. Phys. Chem. A 115, 6202 (2011).CrossRefGoogle Scholar
  16. 16.
    F. Sedlmeier, J. Janecek, C. Sendner, and L. Bocquet, Biointerphases 3, 23 (2008).CrossRefGoogle Scholar
  17. 17.
    J. Kofinger, G. Hummer, and C. Dellago, Proc. Natl. Acad. Sci. U.S.A. 105, 13218 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    S. Strazdaite, J. Versluis, E. H. G. Backus, and H. J. Bakker, J. Chem. Phys. 140, 054711 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    F. Corsetti, O. Matthews, and E. Artacho, Sci. Rep. 6, 18651 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • M. I. Ryzhkin
    • 1
  • I. A. Ryzhkin
    • 1
    • 2
    Email author
  • A. M. Kashin
    • 2
  • E. A. Galitskaya
    • 1
  • V. V. Sinitsyn
    • 1
  1. 1.Institute of Solid State PhysicsRussian Academy of ScienceChernogolovka, Moscow regionRussia
  2. 2.Inenergy Company GroupMoscowRussia

Personalised recommendations