Advertisement

JETP Letters

, Volume 108, Issue 9, pp 605–609 | Cite as

Three-Dimensional Numerical Simulation of Long-Lived Quantum Vortex Knots and Links in a Trapped Bose Condensate

  • V. P. RubanEmail author
Condensed Matter

Abstract

The dynamics of the simplest vortex knots, “unknots,” and torus links in an atomic Bose condensate at zero temperature in an anisotropic harmonic trap has been simulated numerically within the three-dimensional Gross–Pitaevskii equation. It has been found that such quasistationary rotating vortex structures exist for a very long time in wide ranges of the parameters of the system. This new result is qualitatively consistent with a previous prediction based on a simplified one-dimensional model approximately describing the motion of knotted vortex filaments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. L. Fetter, Rev. Mod. Phys. 81, 647 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    A. A. Svidzinsky and A. L. Fetter, Phys. Rev. A 62, 063617 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    A. L. Fetter and A. A. Svidzinsky, J. Phys.: Condens. Matter 13, R135 (2001).Google Scholar
  4. 4.
    V. P. Ruban, Phys. Rev. E 64, 036305 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    A. Aftalion and T. Riviere, Phys. Rev. A 64, 043611 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    J. Garcia-Ripoll and V. Perez-Garcia, Phys. Rev. A 64, 053611 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    A. Aftalion and R. L. Jerrard, Phys. Rev. A 66, 023611 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    P. Rosenbusch, V. Bretin, and J. Dalibard, Phys. Rev. Lett. 89, 200403 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    A. Aftalion and I. Danaila, Phys. Rev. A 68, 023603 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    A. Aftalion and I. Danaila, Phys. Rev. A 69, 033608 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    I. Danaila, Phys. Rev. A 72, 013605 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    A. Fetter, Phys. Rev. A 69, 043617 (2004).ADSCrossRefGoogle Scholar
  13. 13.
    T.-L. Horng, S.-C. Gou, and T.-C. Lin, Phys. Rev. A 74, 041603 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    S. Serafini, M. Barbiero, M. Debortoli, S. Donadello, F. Larcher, F. Dalfovo, G. Lamporesi, and G. Ferrari, Phys. Rev. Lett. 115, 170402 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    R. N. Bisset, W. Wang, C. Ticknor, R. Carretero-Gonzalez, D. J. Frantzeskakis, L. A. Collins, and P. G. Kevrekidis, Phys. Rev. A 92, 063611 (2015).MathSciNetCrossRefGoogle Scholar
  16. 16.
    V. P. Ruban, JETP Lett. 103, 780 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    V. P. Ruban, JETP Lett. 104, 868 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    V. P. Ruban, J. Exp. Theor. Phys. 124, 932 (2017).ADSCrossRefGoogle Scholar
  19. 19.
    V. P. Ruban, JETP Lett. 106, 223 (2017).ADSCrossRefGoogle Scholar
  20. 20.
    S. Serafini, L. Galantucci, E. Iseni, T. Bienaime, R.N. Bisset, C. F. Barenghi, F. Dalfovo, G. Lamporesi, and G. Ferrari, Phys. Rev. X 7, 021031 (2017).Google Scholar
  21. 21.
    R. N. Bisset, S. Serafini, E. Iseni, M. Barbiero, T. Bienaime, G. Lamporesi, G. Ferrari, and F. Dalfovo, Phys. Rev. A 96, 053605 (2017).ADSCrossRefGoogle Scholar
  22. 22.
    W. Wang, R. N. Bisset, C. Ticknor, R. Carretero-Gonzalez, D. J. 'Frantzeskakis, L. A. Collins, and P. G. Kevrekidis, Phys. Rev. A 95, 043638 (2017).ADSCrossRefGoogle Scholar
  23. 23.
    C. Ticknor, W. Wang, and P. G. Kevrekidis, Phys. Rev. A 98, 033609 (2018).ADSCrossRefGoogle Scholar
  24. 24.
    R. L. Ricca, D. C. Samuels, and C. F. Barenghi, J. Fluid Mech. 391, 29 (1999).ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    F. Maggioni, S. Alamri, C. F. Barenghi, and R. L. Ricca, Phys. Rev. E 82, 026309 (2010).ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    D. Proment, M. Onorato, and C. F. Barenghi, Phys. Rev. E 85, 036306 (2012).ADSCrossRefGoogle Scholar
  27. 27.
    D. Kleckner and W. T. M. Irvine, Nat. Phys. 9, 253 (2013).CrossRefGoogle Scholar
  28. 28.
    D. Proment, M. Onorato, and C. F. Barenghi, J. Phys.: Conf. Ser. 544, 012022 (2014).Google Scholar
  29. 29.
    P. Clark di Leoni, P. D. Mininni, and M. E. Brachet, Phys. Rev. A 94, 043605 (2016).ADSCrossRefGoogle Scholar
  30. 30.
    D. Kleckner, L. H. Kauffman, and W. T. M. Irvine, Nat. Phys. 12, 650 (2016).CrossRefGoogle Scholar
  31. 31.
    V. P. Ruban, JETP Lett. 107, 307 (2018).ADSCrossRefGoogle Scholar
  32. 32.
    V. P. Ruban, J. Exp. Theor. Phys. 127, 581 (2018).ADSCrossRefGoogle Scholar
  33. 33.
    V. P. Ruban, J. Exp. Theor. Phys. 126, 397 (2018).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations