Advertisement

JETP Letters

, Volume 108, Issue 9, pp 623–626 | Cite as

Hidden Fermi Surface in KxFe2–ySe2: LDA + DMFT Study

  • I. A. NekrasovEmail author
  • N. S. Pavlov
Condensed Matter
  • 19 Downloads

Abstract

In this paper we provide theoretical LDA + DMFT support of recent angle-resolved photoemission spectroscopy (ARPES) observation of the so-called hidden hole-like band and corresponding hidden Fermi surface sheet near Γ-point in the K0.62Fe1.7Se2 compound. To some extent, this is a solution to the long-standing riddle of Fermi surface absence around Γ-point in the KxFe2–ySe2 class of iron chalcogenide superconductors. In accordance with the experimental data, Fermi surface was found near the Γ-point within LDA + DMFT calculations. Based on the LDA + DMFT analysis in this paper it is shown that the largest of the experimental Fermi surface sheets is actually formed by a hybrid Fe-3d ( xy, xz, yz )quasiparticle band. It is also shown that the Fermi surface is not a simple circle as DFT-LDA predicts, but has (according to the LDA + DMFT) a more complicated “propeller”-like structure due to correlations and multiorbital nature of the KxFe2–ySe2 materials. While the smallest experimental Fermi surface around Γ-point is in some sense fictitious, since it is formed by the summation of the intensities of the spectral function associated with “propeller” loupes and is not connected to any of quasiparticle bands.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. V. Sadovskii, Phys. Usp. 51, 1201 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    K. Ishida, Y. Nakai, and H. Hosono, J. Phys. Soc. Jpn. 78, 062001 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    D. C. Johnson, Adv. Phys. 59, 83 (2010).Google Scholar
  4. 4.
    P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Rep. Prog. Phys. 74, 124508 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    G. R. Stewart, Rev. Mod. Phys. 83, 1589 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    A. A. Kordyuk, Low Temp. Phys. 38, 888 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    M. V. Sadovskii, E. Z. Kuchinskii, and I. A. Nekrasov, J. Magn. Magn. Mater. 324, 3481 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    I. A. Nekrasov, N. S. Pavlov, M. V. Sadovskii, and A. A. Slobodchikov, Low Temp. Phys. 42, 891 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, JETP Lett. 105, 370 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, J. Exp. Theor. Phys. 126, 485 (2018).ADSCrossRefGoogle Scholar
  11. 11.
    M. V. Sadovskii, Phys. Usp. 59, 947 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    T. Qian, X.-P. Wang, W.-C. Jin, P. Zhang, P. Richard, G. Xu, X. Dai, Z. Fang, J.-G. Guo, X.-L. Chen, and H. Ding, Phys. Rev. Lett. 106, 187001 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    Y. Zhang, L. X. Yang, M. Xu, Z. R. Ye, F. Chen, C. He, H. C. Xu, J. Jiang, B. P. Xie, J. J. Ying, X. F. Wang, X. H. Chen, J. P. Hu, M. Matsunami, S. Kimura, and D. L. Feng, Nat. Mater. 10, 273 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    J. J. Lee, F. T. Schmitt, R. G. Moore, S. Johnston, Y.-T. Cui, W. Li, M. Yi, Z. K. Liu, M. Hashimoto, Y. Zhang, D. H. Lu, T. P. Devereaux, D.-H. Lee, and Z.-X. Shen, Nature (London, U.K.) 515, 245 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    L. Zhao, D. Mou, Sh. Liu, et al., Phys. Rev. B 83, 140508(R) (2011).Google Scholar
  16. 16.
    M. Sunagawa, K. Terashima, T. Hamada, et al., J. Phys. Soc. Jpn. 85, 073704 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, JETP Lett. 97, 15 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, J. Exp. Theor. Phys. 117, 926 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, JETP Lett. 95, 581 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, J. Exp. Theor. Phys. 116, 620 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    O. K. Andersen, Phys. Rev. B 12, 3060 (1975).ADSCrossRefGoogle Scholar
  22. 22.
    O. Gunnarsson, O. Jepsen, and O. K. Andersen, Phys. Rev. B 27, 7144 (1983).ADSCrossRefGoogle Scholar
  23. 23.
    O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).ADSCrossRefGoogle Scholar
  24. 24.
    J. Guo, Sh. Jin, G. Wang, Sh. Wang, K. Zhu, T. Zhou, M. He, and X. Chen, Phys. Rev. B 82, 180520(R) (2010).Google Scholar
  25. 25.
    P. Werner, A. Comanac, L. de Medici, M. Troyer, and A. J. Millis, Phys. Rev. Lett. 97, 076405 (2006).ADSCrossRefGoogle Scholar
  26. 26.
    K. Haule, Phys. Rev. B 75, 155113 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer, and P. Werner, Rev. Mod. Phys. 83, 349 (2011).ADSCrossRefGoogle Scholar
  28. 28.
    M. Ferrero and O. Parcollet, TRIQS: a Toolboxfor Research in Interacting Quantum Systems. http://ipht.cea.fr/triqs.Google Scholar
  29. 29.
    M. Aichhorn, L. Pourovskii, V. Vildosola, M. Ferrero, O. Parcollet, T. Miyake, A. Georges, and S. Biermann, Phys. Rev. B 80, 085101 (2009).ADSCrossRefGoogle Scholar
  30. 30.
    L. Boehnke, H. Hafermann, M. Ferrero, F. Lechermann, and O. Parcollet, Phys. Rev. B 84, 075145 (2011).ADSCrossRefGoogle Scholar
  31. 31.
    M. Yi, D. H. Lu, R. Yu, S. C. Riggs, J.-H. Chu, B. Lv, Z. K. Liu, M. Lu, Y.-T. Cui, M. Hashimoto, S.-K. Mo, Z. Hussain, C. W. Chu, I. R. Fisher, Q. Si, and Z.-X. Shen, Phys. Rev. Lett. 110, 067003 (2013).ADSCrossRefGoogle Scholar
  32. 32.
    H. J. Vidberg and J. W. Serene, J. Low Temp. Phys. 29, 179 (1977).ADSCrossRefGoogle Scholar
  33. 33.
    M. Jarrell and J. E. Gubernatis, Phys. Rep. 269, 133 (1996).ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, J. Supercond. Nov. Magn. 29, 1117 (2016).CrossRefGoogle Scholar
  35. 35.
    I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, JETP Lett. 102, 26 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Electrophysics, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations