Advertisement

JETP Letters

, Volume 108, Issue 9, pp 588–595 | Cite as

3D Uniform Manipulation of NV Centers in Diamond Using a Dielectric Resonator Antenna

  • P. Kapitanova
  • V. V. Soshenko
  • V. V. Vorobyov
  • D. Dobrykh
  • S. V. Bolshedvorskii
  • V. N. Sorokin
  • A. V. Akimov
Condensed Matter

Abstract

Ensembles of nitrogen-vacancy color centers in diamond hold promise for ultra-precise magnetometry, competing with superconducting quantum interference device detectors. By utilizing the advantages of dielectric materials, such as very low losses for electromagnetic field, with the potential for creating high Q-factor resonators with strong concentration of the field within it, we implemented a dielectric resonator antenna for coherent manipulation of a large ensemble of nitrogen-vacancy centers in diamond. We reached average Rabi frequency of 10 MHz in a volume of 7 mm3 with a standard deviation of less than 1% at a moderate pump power. The obtained result enables use of large volume low nitrogen-vacancy concentration diamond plates in modern nitrogen-vacancy magnetometers thus improving sensitivity via larger coherence time and higher optical detected magnetic resonance contrast.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11448_2018_1871_MOESM1_ESM.pdf (1 mb)
Supplementary material, approximately 1067 KB.

References

  1. 1.
    J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, Nat. Phys. 4, 810 (2008).CrossRefGoogle Scholar
  2. 2.
    M. Grinolds, S. Hong, P. Maletinsky, and L. Luan, Nat. Phys. 9, 12 (2013).CrossRefGoogle Scholar
  3. 3.
    T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, Phys. Rev. X 5, 041001 (2015).Google Scholar
  4. 4.
    H. Clevenson, M. E. Trusheim, T. Schroder, C. Teale, D. Braje, and D. Englund, Nat. Phys. 11, 393 (2015).CrossRefGoogle Scholar
  5. 5.
    I. V. Fedotov, N. A. Safronov, Y. G. Ermakova, M. E. Matlashov, D. A. Sidorov-Biryukov, A. B. Fedotov, V. V. Belousov, and A. M. Zheltikov, Sci. Rep. 5, 15737 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    I. V. Fedotov, L. V. Doronina-Amitonova, A. A. Voronin, A. O. Levchenko, S. A. Zibrov, D. A. Sidorov-Biryukov, A. B. Fedotov, V. L. Velichansky, and A.M. Zheltikov, Sci. Rep. 4, 5362 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    A. O. Sushkov, I. Lovchinsky, N. Chisholm, R. L. Walsworth, H. Park, and M. D. Lukin, Phys. Rev. Lett. 113, 197601 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    M. S. Grinolds, M. Warner, K. de Greve, Y. Dovzhenko, L. Thiel, R. L. Walsworth, S. Hong, P. Maletinsky, and A. Yacoby, Nat. Nanotechnol. 9, 279 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    I. Lovchinsky, A. O. Sushkov, E. Urbach, N. P. de Leon, S. Choi, K. de Greve, R. Evans, R. Gertner, E. Bersin, C. Müller, L. McGuinness, F. Jelezko, R. L. Walsworth, H. Park, and M. D. Lukin, Science (Washington, DC, U. S.) 351, 836 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    F. Dolde, H. Fedder, M. W. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup, Nat. Phys. 7, 459 (2011).CrossRefGoogle Scholar
  11. 11.
    E. H. Chen, H. A. Clevenson, K. A. Johnson, L.M.Pham, D. R. Englund, P. R. Hemmer, and D. A. Braje, Phys. Rev. A 95, 053417 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    S. Ali Momenzadeh, F. F. de Oliveira, P. Neumann, D. D. Bhaktavatsala Rao, A. Denisenko, M. Amjadi, Z. Chu, S. Yang, N. B. Manson, M. W. Doherty, and J. Wrachtrup, Phys. Rev. Appl. 6, 024026 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    T. Fukui, Yu Doi, T. Miyazaki, et al., Appl. Phys. Express 7, 055201 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    J. Michl, T. Teraji, S. Zaiser, I. Jakobi, G. Waldherr, F.Dolde, P. Neumann, M. W. Doherty, N. B. Manson, J. Isoya, and J. Wrachtrup, Appl. Phys. Lett. 104, 102407 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    O. R. Rubinas, V. V. Vorobyov, V. V. Soshenko, S. V. Bolshedvorskii, V. N. Sorokin, A. N. Smolyaninov, V. G. Vins, A. P. Yelisseyev, and A. V. Akimov, arXiv:1806.09816 (2018).Google Scholar
  16. 16.
    V. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K.-M. C. Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, and D. Budker, Phys. Rev. B 80, 115202 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    D. R. Glenn, D. B. Bucher, J. Lee, M. D. Lukin, H. Park, and R. L. Walsworth, Nature (London, U.K.) 555, 351 (2018).ADSCrossRefGoogle Scholar
  18. 18.
    E. Bauch, C. A. Hart, J. M. Schloss, M. J. Turner, J. F. Barry, P. Kehayias, S. Singh, and R. L. Walsworth, Phys. Rev. X 8, 031025 (2018).Google Scholar
  19. 19.
    K. D. Jahnke, B. Naydenov, T. Teraji, S. Koizumi, T. Umeda, J. Isoya, and F. Jelezko, Appl. Phys. Lett. 101, 012405 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    K. Bayat, J. Choy, M. Farrokh Baroughi, S. Meesala, and M. Loncar, Nano Lett. 14, 1208 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    M. Mrözek, J. Mlynarczyk, D. S. Rudnicki, and W. Gawlik, Appl. Phys. Lett. 107, 013505 (2015).ADSCrossRefGoogle Scholar
  22. 22.
    K. Sasaki, Y. Monnai, S. Saijo, R. Fujita, H. Watanabe, J. Ishi-Hayase, K. M. Itoh, and E. Abe, Rev. Sci. Instrum. 87, 053904 (2016.Google Scholar
  23. 23.
    J. Herrmann, M. A. Appleton, K. Sasaki, Y. Monnai, T. Teraji, K. M. Itoh, and E. Abe, Appl. Phys. Lett. 109, 1 (2016).CrossRefGoogle Scholar
  24. 24.
    D. M. Pozar, Microwave Engineering, 3rd ed. (Wiley, Hoboken, NJ, 2005).Google Scholar
  25. 25.
    K.-M. Luk and K.-W. Leung, Dielectric Resonator Antennas (Research Studies, Baldock, Hertfordshire, UK, 2003).Google Scholar
  26. 26.
    C. A. Balanis, Antenna Theory: Analysis and Design, 4th ed. (Wiley, Hoboken, NJ, 2016).Google Scholar
  27. 27.
    L. Huitema and T. Monediere, in Dielectric Materials, Ed. by M. A. Silaghi (InTech, Rijeka, 2012). https://www.Intechopen.Com/Books/Dielectric-Material/Dielectric-Materials-for-Compact-Dielectric-Resonator-Antenna-Applications.Google Scholar
  28. 28.
    A. S. Abdellatif, A. Taeb, N. Ranjkesh, E. Gigoyan, E. Nenasheva, S. Safavi-Naeini, S. Gigoyan, E. Nenasheva, and S. Safavi-Naeini, Int. J. Microwave Wireless Technol. 8, 33 (2016).CrossRefGoogle Scholar
  29. 29.
    V. V. Vorobyov, V. V. Soshenko, S. V. Bolshedvorskii, J. Javadzade, N. Lebedev, A. N. Smolyaninov, V. N. Sorokin, and A. V. Akimov, Eur. Phys. J. D 70, 269 (2016).ADSCrossRefGoogle Scholar
  30. 30.
    K. Tahara, H. Ozawa, T. Iwasaki, N. Mizuochi, and M. Hatano, Appl. Phys. Lett. 107, (2015).Google Scholar
  31. 31.
    T. Ishikawa, K. M. C. Fu, C. Santori, V. M. Acosta, R. G. Beausoleil, H. Watanabe, S. Shikata, and K. M. Itoh, Nano Lett. 12, 2083 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • P. Kapitanova
    • 1
  • V. V. Soshenko
    • 2
  • V. V. Vorobyov
    • 2
    • 3
  • D. Dobrykh
    • 1
  • S. V. Bolshedvorskii
    • 2
    • 3
  • V. N. Sorokin
    • 2
  • A. V. Akimov
    • 2
    • 4
    • 5
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow regionRussia
  4. 4.Russian Quantum CenterMoscowRussia
  5. 5.Texas A&M UniversityCollege StationUSA

Personalised recommendations