Skip to main content
Log in

Effect of Magnetic Field on the Nanohardness of Monocrystalline Silicon and Its Mechanism

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The effect of magnetic field on the nanohardness of monocrystalline silicon doped with phosphorous by ion implantation is studied. It is found that a magnetic field of certain parameters can increase the nanohardness of monocrystalline silicon doped with phosphorous by ion implantation, and this increase can be eliminated by annealing monocrystalline silicon doped with phosphorous by ion implantation at 800°C for 780 s. For the monocrystalline silicon doped with phosphorous by ion implantations that have not been exposed to a magnetic field, annealing them at 800°C for 780 s cannot affect their nanohardness, but exposing them to the magnetic field mentioned previously can no longer affect their nanohardness after annealing. The mechanism of all these phenomena is discussed. A possible mechanism that a magnetic field can promote the disbanding of vacancy clusters, and a possible mechanism of magnetically stimulated clusters’ disbanding and magnetoplastic effect are put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. I. Golovin and R. B. Morgunov, J. Exp. Theor. Phys. 88, 332 (1999).

    Article  ADS  Google Scholar 

  2. V. I. Al’shitz, E. V. Darinskaya, and O. L. Kazakova, J. Exp. Theor. Phys. 84, 338 (1997).

    Article  ADS  Google Scholar 

  3. Yu. I. Golovin, R. B. Morgunov, D. V. Lopatin, A. A. Baskakov, and Y. E. Evgen’ev, Phys. Solid State 40, 1870 (1998).

    Article  ADS  Google Scholar 

  4. Yu. I. Golovin, R. B. Morgunov, and V. E. Ivanov, Phys. Solid State 39, 550 (1997).

    Article  ADS  Google Scholar 

  5. V. I. Al’shits, E. V. Darinskaya, and O. L. Kazakova, Phys. Solid State 40, 70 (1998).

    Article  ADS  Google Scholar 

  6. E. V. Darinskaya, E. A. Petrzhik, S. A. Erofeev, and V. P. Kisel’, JETP Lett. 70, 309 (1999).

    Article  ADS  Google Scholar 

  7. Yu. I. Golovin, Crystallogr. Rep. 49, 668 (2004).

    Article  ADS  Google Scholar 

  8. A. M. Orlov, A. A. Skvortsov, and L. I. Gonchar, Phys. Solid State 43, 1252 (2001).

    Article  ADS  Google Scholar 

  9. L. Junwan and Y. Ni, Rare Met. Mater. Eng. 39, 2095 (2010).

    Google Scholar 

  10. J. Jin, S. A. Shevlin, and Z. X. Guo, Acta Mater. 56, 4358 (2008).

    Article  Google Scholar 

  11. J. Li, Y. Ni, Y. Lin, C. Luo, and W. Jiang, Acta Metall. Sin. 45, 129 (2009).

    Google Scholar 

  12. Ž. Pastuovic, I. Capan, R. Siegele, R. Jacimovic, J. Forneris, D. D. Cohen, and E. Vittone, Nucl. Instrum. Methods Phys. Res. 332, 298 (2014).

    Article  ADS  Google Scholar 

  13. Yu. I. Golovin, A. A. Dmitrievskii, N. Y. Suchkova, and M. V. Badylevich, Phys. Solid State 47, 1278 (2005).

    Article  ADS  Google Scholar 

  14. Yu. I. Golovin, A. A. Dmitrievskii, and N. Y. Suchkova, Phys. Solid State 48, 279 (2006).

    Article  ADS  Google Scholar 

  15. V. S. Vavilov, V. F. Kiselev, and B. N. Mukashev, Defects in the Bulk and at the Surface of Silicon (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  16. N. V. Kuznetsov and G. G. Solov’ev, Radiation Resistance of Silicon (Energoatomizdat, Moscow, 1989) [in Russian].

    Google Scholar 

  17. Yu. I. Golovin, A. A. Dmitrievskii, V. E. Ivanov, N. Y. Suchkova, and M. Y. Tolotaev, Phys. Solid State 49, 865 (2007).

    Article  ADS  Google Scholar 

  18. A. L. Buchachenko, J. Exp. Theor. Phys. 105, 593 (2007).

    Article  ADS  Google Scholar 

  19. R. B. Morgunov and A. L. Buchachenko, J. Exp. Theor. Phys. 109, 434 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. P. Cai.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Cai, Z.P. Effect of Magnetic Field on the Nanohardness of Monocrystalline Silicon and Its Mechanism. Jetp Lett. 108, 23–29 (2018). https://doi.org/10.1134/S0021364018130040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018130040

Navigation