JETP Letters

, Volume 108, Issue 1, pp 71–83 | Cite as

Noise Insights into Electronic Transport

  • S. U. Piatrusha
  • L. V. Ginzburg
  • E. S. Tikhonov
  • D. V. Shovkun
  • G. Koblmüller
  • A. V. Bubis
  • A. K. Grebenko
  • A. G. Nasibulin
  • V. S. Khrapai
Scientific Summaries


Typical experimental measurement is set up as a study of the system’s response to a stationary external excitation. This approach considers any random fluctuation of the signal as spurious contribution, which is to be eliminated via time-averaging, or, equivalently, bandwidth reduction. Beyond that lies a conceptually different paradigm—the measurement of the system’s spontaneous fluctuations. The goal of this overview article is to demonstrate how current noise measurements bring insight into hidden features of electronic transport in various mesoscopic conductors, ranging from 2D topological insulators to individual carbon nanotubes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Schottky, Ann. Phys. 362, 541 (1918).Google Scholar
  2. 2.
    Y. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).ADSGoogle Scholar
  3. 3.
    A. W. Hull and N. H. Williams, Phys. Rev. 25, 147 (1925).ADSGoogle Scholar
  4. 4.
    R. de Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G. Bunin, and D. Mahalu, Nature (London, U.K.) 389, 162 (1997).ADSGoogle Scholar
  5. 5.
    L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Phys. Rev. Lett. 79, 2526 (1997).ADSGoogle Scholar
  6. 6.
    C. Schönenberger, S. Oberholzer, E. Sukhorukov, and H. Grabert, arXiv:0112504 (2001).Google Scholar
  7. 7.
    L. Levitov and G. Lesovik, JETP Lett. 58, 230 (1993).ADSGoogle Scholar
  8. 8.
    M. Reznikov, M. Heiblum, H. Shtrikman, and D. Mahalu, Phys. Rev. Lett. 75, 3340 (1995).ADSGoogle Scholar
  9. 9.
    C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).ADSGoogle Scholar
  10. 10.
    C. W. J. Beenakker and M. Büttiker, Phys. Rev. B 46, 1889 (1992).ADSGoogle Scholar
  11. 11.
    K. E. Nagaev, Phys. Lett. A 169, 103 (1992).ADSGoogle Scholar
  12. 12.
    M. Henny, S. Oberholzer, C. Strunk, and C. Schönenberger, Phys. Rev. B 59, 2871 (1999).ADSGoogle Scholar
  13. 13.
    E. S. Tikhonov, D. V. Shovkun, M. Snelder, M. P. Stehno, Y. Huang, M. S. Golden, A. A. Golubov, A. Brinkman, and V. S. Khrapai, Phys. Rev. Lett. 117, 147001 (2016).ADSGoogle Scholar
  14. 14.
    E. S. Tikhonov, D. V. Shovkun, D. Ercolani, F. Rossella, M. Rocci, L. Sorba, S. Roddaro, and V. S. Khrapai, Sci. Rep. 6, 30621 (2016).ADSGoogle Scholar
  15. 15.
    V. V. Kuznetsov, E. E. Mendez, X. Zuo, G. L. Snider, and E. T. Croke, Phys. Rev. Lett. 85, 397 (2000).ADSGoogle Scholar
  16. 16.
    S. S. Safonov, A. K. Savchenko, D. A. Bagrets, O. N. Jouravlev, Y. V. Nazarov, E. H. Linfield, and D. A. Ritchie, Phys. Rev. Lett. 91, 136801 (2003).ADSGoogle Scholar
  17. 17.
    B. Shklovskii and A. Efros, Springer Ser. Solid-State Sci. 45, 1 (2013).Google Scholar
  18. 18.
    K. E. Nagaev, Phys. Rev. B 52, 4740 (1995).ADSGoogle Scholar
  19. 19.
    V. I. Kozub and A. M. Rudin, Phys. Rev. B 52, 7853 (1995).ADSGoogle Scholar
  20. 20.
    Y. V. Nazarov, Phys. Rev. Lett. 73, 134 (1994).ADSGoogle Scholar
  21. 21.
    M. L. Roukes, M. R. Freeman, R. S. Germain, R. C. Richardson, and M. B. Ketchen, Phys. Rev. Lett. 55, 422 (1985).ADSGoogle Scholar
  22. 22.
    S. Piatrusha and V. Khrapai, in Proceedings of the 2017 International Conference on Noise and Fluctuations ICNF (IEEE, 2017).Google Scholar
  23. 23.
    J. Meair, P. Stano, and P. Jacquod, Phys. Rev. B 84, 073302 (2011).ADSGoogle Scholar
  24. 24.
    T. Arakawa, J. Shiogai, M. Ciorga, M. Utz, D. Schuh, M. Kohda, J. Nitta, D. Bougeard, D. Weiss, T. Ono, and K. Kobayashi, Phys. Rev. Lett. 114, 016601 (2015).ADSGoogle Scholar
  25. 25.
    V. S. Khrapai and K. E. Nagaev, JETP Lett. 105, 18 (2017).ADSGoogle Scholar
  26. 26.
    P. Roche, J. Ségala, D. C. Glattli, J. T. Nicholls, M. Pepper, A. C. Graham, K. J. Thomas, M. Y. Simmons, and D. A. Ritchie, Phys. Rev. Lett. 93, 116602 (2004).ADSGoogle Scholar
  27. 27.
    Y. Yamauchi, K. Sekiguchi, K. Chida, T. Arakawa, S. Nakamura, K. Kobayashi, T. Ono, T. Fujii, and R. Sakano, Phys. Rev. Lett. 106, 176601 (2011).ADSGoogle Scholar
  28. 28.
    M.-C. Harabula, V. Ranjan, R. Haller, G. Fülöp, and C. Schönenberger, Phys. Rev. B 97, 115403 (2018).ADSGoogle Scholar
  29. 29.
    H. Inoue, A. Grivnin, N. Ofek, I. Neder, M. Heiblum, V. Umansky, and D. Mahalu, Phys. Rev. Lett. 112, 166801 (2014).ADSGoogle Scholar
  30. 30.
    E. S. Tikhonov, M. Y. Melnikov, D. V. Shovkun, L. Sorba, G. Biasiol, and V. S. Khrapai, Phys. Rev. B 90, 161405 (2014).ADSGoogle Scholar
  31. 31.
    A. A. Kozhevnikov, R. J. Schoelkopf, and D. E. Prober, Phys. Rev. Lett. 84, 3398 (2000).ADSGoogle Scholar
  32. 32.
    B.-R. Choi, A. E. Hansen, T. Kontos, C. Hoffmann, S. Oberholzer, W. Belzig, C. Schönenberger, T. Akazaki, and H. Takayanagi, Phys. Rev. B 72, 024501 (2005).ADSGoogle Scholar
  33. 33.
    A. Das, Y. Ronen, M. Heiblum, D. Mahalu, A. V. Kretinin, and H. Shtrikman, Nat. Commun. 3, 1165 (2012).ADSGoogle Scholar
  34. 34.
    Y. Ronen, Y. Cohen, J.-H. Kang, A. Haim, M.-T. Rieder, M. Heiblum, D. Mahalu, and H. Shtrikman, Proc. Nat. Acad. Sci. U.S.A. 113, 1743 (2016).ADSGoogle Scholar
  35. 35.
    R. Prange, M. Cage, K. Klitzing, S. Girvin, A. Chang, F. Duncan, M. Haldane, R. Laughlin, A. Pruisken, and D. Thouless, The Quantum Hall Effect, Graduate Texts in Contemporary Physics (Springer, New York, 2012).Google Scholar
  36. 36.
    G. Eber, K. von Klitzing, K. Ploog, and G. Weinmann, J. Phys. C: Solid State Phys. 16, 5441 (1983).ADSGoogle Scholar
  37. 37.
    K. Chida, T. Hata, T. Arakawa, S. Matsuo, Y. Nishihara, T. Tanaka, T. Ono, and K. Kobayashi, Phys. Rev. B 89, 235318 (2014).ADSGoogle Scholar
  38. 38.
    Y. A. Kinkhabwala, V. A. Sverdlov, A. N. Korotkov, and K. K. Likharev, J. Phys.: Condens. Matter 18, 1999 (2006).ADSGoogle Scholar
  39. 39.
    E. S. Tikhonov, V. S. Khrapai, D. V. Shovkun, and D. Schuh, JETP Lett. 98, 121 (2013).ADSGoogle Scholar
  40. 40.
    E. Y. Andrei, G. Deville, D. C. Glattli, F. I. B. Williams, E. Paris, and B. Etienne, Phys. Rev. Lett. 60, 2765 (1988).ADSGoogle Scholar
  41. 41.
    H. W. Jiang, R. L. Willett, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 65, 633 (1990).ADSGoogle Scholar
  42. 42.
    A. A. Shashkin, V. T. Dolgopolov, G. V. Kravchenko, M. Wendel, R. Schuster, J. P. Kotthaus, R. J. Haug, K. von Klitzing, K. Ploog, H. Nickel, and W. Schlapp, Phys. Rev. Lett. 73, 3141 (1994).ADSGoogle Scholar
  43. 43.
    A. S. Rodin and M. M. Fogler, Phys. Rev. B 84, 125447 (2011).ADSGoogle Scholar
  44. 44.
    V. S. Khrapai, A. A. Shashkin, M. G. Trokina, V. T. Dolgopolov, V. Pellegrini, F. Beltram, G. Biasiol, and L. Sorba, Phys. Rev. Lett. 100, 196805 (2008).ADSGoogle Scholar
  45. 45.
    S. Iordansky, Solid State Commun. 43, 1 (1982).ADSGoogle Scholar
  46. 46.
    M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).ADSGoogle Scholar
  47. 47.
    B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science (Washington, DC, U. S.) 314, 1757 (2006).ADSGoogle Scholar
  48. 48.
    M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Science (Washington, DC, U. S.) 318, 766 (2007).ADSGoogle Scholar
  49. 49.
    I. Knez, R. R. Du, and G. Sullivan, Phys. Rev. Lett. 107, 136603 (2011).ADSGoogle Scholar
  50. 50.
    X. Qian, J. Liu, L. Fu, and J. Li, Science (Washington, DC, U. S.) 346, 1344 (2014).ADSGoogle Scholar
  51. 51.
    S. Wu, V. Fatemi, Q. D. Gibson, K. Watanabe, T. Taniguchi, R. J. Cava, and P. Jarillo-Herrero, Science (Washington, DC, U. S.) 359, 76 (2018).ADSGoogle Scholar
  52. 52.
    A. Roth, C. Brune, H. Buhmann, L. W. Molenkamp, J. Maciejko, X. L. Qi, and S. C. Zhang, Science (Washington, DC, U. S.) 325, 294 (2009).ADSGoogle Scholar
  53. 53.
    K. C. Nowack, E. M. Spanton, M. Baenninger, M. König, J. R. Kirtley, B. Kalisky, C. Ames, P. Leubner, C. Brüne, H. Buhmann, L. W. Molenkamp, D. Goldhaber-Gordon, and K. A. Moler, Nat. Mater. 12, 787 (2013).ADSGoogle Scholar
  54. 54.
    E. B. Olshanetsky, Z. D. Kvon, G. M. Gusev, A. D. Levin, O. E. Raichev, N. N. Mikhailov, and S. A. Dvoretsky, Phys. Rev. Lett. 114, 126802 (2015).ADSGoogle Scholar
  55. 55.
    K.-M. Dantscher, D. A. Kozlov, M. T. Scherr, S. Gebert, J. Bärenfänger, M. V. Durnev, S. A. Tarasenko, V. V. Bel’kov, N. N. Mikhailov, S. A. Dvoretsky, Z. D. Kvon, J. Ziegler, D. Weiss, and S. D. Ganichev, Phys. Rev. B 95, 201103 (2017).ADSGoogle Scholar
  56. 56.
    T. Li, P. Wang, G. Sullivan, X. Lin, and R.-R. Du, Phys. Rev. B 96, 241406 (2017).ADSGoogle Scholar
  57. 57.
    G. M. Gusev, Z. D. Kvon, E. B. Olshanetsky, A. D. Levin, Y. Krupko, J. C. Portal, N. N. Mikhailov, and S. A. Dvoretsky, Phys. Rev. B 89, 125305 (2014).ADSGoogle Scholar
  58. 58.
    F. Nichele, H. J. Suominen, M. Kjaergaard, C. M. Marcus, E. Sajadi, J. A. Folk, F. Qu, A. J. A. Beukman, F. K. de Vries, J. van Veen, S. Nadj-Perge, L. P. Kouwenhoven, B.-M. Nguyen, A. A. Kiselev, W. Yi, M. Sokolich, M. J. Manfra, E. M. Spanton, and K. A. Moler, New J. Phys. 18, 083005 (2016).ADSGoogle Scholar
  59. 59.
    E. S. Tikhonov, D. V. Shovkun, V. S. Khrapai, Z. D. Kvon, N. N. Mikhailov, and S. A. Dvoretsky, JETP Lett. 101, 708 (2015).ADSGoogle Scholar
  60. 60.
    P. P. Aseev and K. E. Nagaev, Phys. Rev. B 94, 045425 (2016).ADSGoogle Scholar
  61. 61.
    Z. D. Kvon, E. B. Olshanetsky, D. A. Kozlov, E. Novik, N. N. Mikhailov, and S. A. Dvoretsky, Physics 37, 202 (2011).Google Scholar
  62. 62.
    M. de Jong and C. Beenakker, Phys. A (Amsterdam, Neth.) 230, 219 (1996).ADSGoogle Scholar
  63. 63.
    T. L. Schmidt, S. Rachel, F. von Oppen, and L. I. Glazman, Phys. Rev. Lett. 108, 156402 (2012).ADSGoogle Scholar
  64. 64.
    N. Kainaris, I. V. Gornyi, S. T. Carr, and A. D. Mirlin, Phys. Rev. B 90, 075118 (2014).ADSGoogle Scholar
  65. 65.
    J. I. Väyrynen, M. Goldstein, and L. I. Glazman, Phys. Rev. Lett. 110, 216402 (2013).ADSGoogle Scholar
  66. 66.
    P. D. Kurilovich, V. D. Kurilovich, I. S. Burmistrov, and M. Goldstein, JETP Lett. 106, 593 (2017).ADSGoogle Scholar
  67. 67.
    C. H. Hsu, P. Stano, J. Klinovaja, and D. Loss, Phys. Rev. B 96, 1 (2017).Google Scholar
  68. 68.
    C.-H. Hsu, P. Stano, J. Klinovaja, and D. Loss, Phys. Rev. B 97, 125432 (2018).ADSGoogle Scholar
  69. 69.
    J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).ADSGoogle Scholar
  70. 70.
    V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Science (Washington, DC, U. S.) 336, 1003 (2012).ADSGoogle Scholar
  71. 71.
    H. O. H. Churchill, V. Fatemi, K. Grove-Rasmussen, M. T. Deng, P. Caroff, H. Q. Xu, and C. M. Marcus, Phys. Rev. B 87, 241401 (2013).ADSGoogle Scholar
  72. 72.
    J. Shabani, M. Kjaergaard, H. J. Suominen, Y. Kim, F. Nichele, K. Pakrouski, T. Stankevic, R. M. Lutchyn, P. Krogstrup, R. Feidenhans’l, S. Kraemer, C. Nayak, M. Troyer, C. M. Marcus, and C. J. Palmstrom, Phys. Rev. B 93, 155402 (2016).ADSGoogle Scholar
  73. 73.
    M. Kjaergaard, H. J. Suominen, M. P. Nowak, A. R. Akhmerov, J. Shabani, C. J. Palmstrom, F. Nichele, and C. M. Marcus, Phys. Rev. Appl. 7, 034029 (2017).ADSGoogle Scholar
  74. 74.
    H. J. Suominen, M. Kjaergaard, A. R. Hamilton, J. Shabani, C. J. Palmstrom, C. M. Marcus, and F. Nichele, Phys. Rev. Lett. 119, 176805 (2017).ADSGoogle Scholar
  75. 75.
    G. Koblmller, S. Hertenberger, K. Vizbaras, M. Bichler, F. Bao, J.-P. Zhang, and G. Abstreiter, Nanotechnology 21, 365602 (2010).Google Scholar
  76. 76.
    S. Abay, D. Persson, H. Nilsson, F. Wu, H. Q. Xu, M. Fogelström, V. Shumeiko, and P. Delsing, Phys. Rev. B 89, 214508 (2014).ADSGoogle Scholar
  77. 77.
    A. V. Bubis, A. O. Denisov, S. U. Piatrusha, I. E. Batov, V. S. Khrapai, J. Becker, J. Treu, D. Ruhstorfer, and G. Koblmüller, Semicond. Sci. Technol. 32, 094007 (2017).ADSGoogle Scholar
  78. 78.
    A. Shelankov, JETP Lett. 32, 111 (1980).ADSGoogle Scholar
  79. 79.
    J. Becker, S. Morkötter, J. Treu, M. Sonner, M. Speckbacher, M. Döblinger, G. Abstreiter, J. J. Finley, and G. Koblmüller, Phys. Rev. B 97, 115306 (2018).ADSGoogle Scholar
  80. 80.
    M. T. Deng, S. Vaitiekenas, E. B. Hansen, J. Danon, M. Leijnse, K. Flensberg, J. Nygård, P. Krogstrup, and C. M. Marcus, Science (Washington, DC, U. S.) 354, 1557 (2016).ADSGoogle Scholar
  81. 81.
    Y. V. Nazarov, Phys. Rev. Lett. 73, 1420 (1994).ADSGoogle Scholar
  82. 82.
    M. Henny, Science (Washington, DC, U. S.) 284, 296 (1999).ADSGoogle Scholar
  83. 83.
    A. Moisala, A. G. Nasibulin, D. P. Brown, H. Jiang, L. Khriachtchev, and E. I. Kauppinen, Chem. Eng. Sci. 61, 4393 (2006).Google Scholar
  84. 84.
    Y. Tian, M. Y. Timmermans, M. Partanen, A. G. Nasibulin, H. Jiang, Z. Zhu, and E. I. Kauppinen, Carbon 49, 4636 (2011).Google Scholar
  85. 85.
    M. Bockrath, Science (Washington, DC, U. S.) 275, 1922 (1997).Google Scholar
  86. 86.
    S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, and C. Dekker, Nature (London, U.K.) 386, 474 (1997).ADSGoogle Scholar
  87. 87.
    E. V. Sukhorukov, G. Burkard, and D. Loss, Phys. Rev. B 63, 125315 (2001).ADSGoogle Scholar
  88. 88.
    W. Belzig, Phys. Rev. B 71, 161301 (2005).ADSGoogle Scholar
  89. 89.
    J. Basset, A. Y. Kasumov, C. P. Moca, G. Zaránd, P. Simon, H. Bouchiat, and R. Deblock, Phys. Rev. Lett. 108, 046802 (2012).ADSGoogle Scholar
  90. 90.
    E. Onac, F. Balestro, B. Trauzettel, C. F. J. Lodewijk, and L. P. Kouwenhoven, Phys. Rev. Lett. 96, 026803 (2006).ADSGoogle Scholar
  91. 91.
    F. Wu, P. Queipo, A. Nasibulin, T. Tsuneta, T. H. Wang, E. Kauppinen, and P. J. Hakonen, Phys. Rev. Lett. 99, 156803 (2007)ADSGoogle Scholar
  92. 92.
    K. Kaasbjerg and W. Belzig, Phys. Rev. B 91, 235413 (2015).ADSGoogle Scholar
  93. 93.
    S. Kogan, Electronic Noise and Fluctuations in Solids (Cambridge Univ. Press, Cambridge, 2008).Google Scholar
  94. 94.
    D. V. Ooijen and G. V. Gurp, Phys. Lett. 17, 230 (1965).ADSGoogle Scholar
  95. 95.
    R. F. Voss, C. M. Knoedler, and P. M. Horn, Phys. Rev. Lett. 45, 1523 (1980).ADSGoogle Scholar
  96. 96.
    T. Hoss, C. Strunk, T. Nussbaumer, R. Huber, U. Staufer, and C. Schönenberger, Phys. Rev. B 62, 4079 (2000).ADSGoogle Scholar
  97. 97.
    D. Bagrets and A. Levchenko, Phys. Rev. B 90, 180505 (2014).ADSGoogle Scholar
  98. 98.
    M. Žonda, W. Belzig, and T. Novotný, Phys. Rev. B 91, 134305 (2015).ADSGoogle Scholar
  99. 99.
    A. G. Semenov and A. D. Zaikin, Phys. Rev. B 94, 014512 (2016).ADSGoogle Scholar
  100. 100.
    H. F. C. Hoevers, A. C. Bento, M. P. Bruijn, L. Gottardi, M. A. N. Korevaar, W. A. Mels, and P. A. J. de Korte, Appl. Phys. Lett. 77, 4422 (2000).ADSGoogle Scholar
  101. 101.
    L. Landau and E. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, 3rd ed. (Elsevier Science, Amsterdam, 2013; Nauka, Moscow, 1995), eng. p.340.Google Scholar
  102. 102.
    S. Kogan, Sov. Phys. Usp. 28, 170 (1985).ADSGoogle Scholar
  103. 103.
    A. Kardakova, A. Shishkin, A. Semenov, G. N. Goltsman, S. Ryabchun, T. M. Klapwijk, J. Bousquet, D. Eon, B. Sacépé, T. Klein, and E. Bustarret, Phys. Rev. B 93, 064506 (2016).ADSGoogle Scholar
  104. 104.
    S. V. Postolova, A. Y. Mironov, and T. I. Baturina, JETP Lett. 100, 635 (2015).ADSGoogle Scholar
  105. 105.
    A. Mani and C. Benjamin, Sci. Rep. 7, 6954 (2017).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • S. U. Piatrusha
    • 1
    • 2
  • L. V. Ginzburg
    • 1
    • 2
  • E. S. Tikhonov
    • 1
    • 2
  • D. V. Shovkun
    • 1
    • 2
  • G. Koblmüller
    • 3
  • A. V. Bubis
    • 1
    • 2
    • 4
  • A. K. Grebenko
    • 2
    • 4
  • A. G. Nasibulin
    • 4
    • 5
  • V. S. Khrapai
    • 1
    • 6
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow regionRussia
  3. 3.Walter Schottky Institut, Physik Department, and Center for Nanotechnology and NanomaterialsTechnische Universität MünchenGarchingGermany
  4. 4.Skolkovo Institute of Science and TechnologyMoscowRussia
  5. 5.Department of Applied Physics, School of ScienceAalto UniversityAaltoFinland
  6. 6.Department of PhysicsMoscow State University of EducationMoscowRussia

Personalised recommendations