JETP Letters

, Volume 107, Issue 11, pp 695–698 | Cite as

Cascade “Melting” of a Linear Disclination in Chiral Nematic Droplets

  • O. A. Skaldin
  • I. I. Klebanov
  • Yu. I. Timirov
  • E. R. Basyrova
  • V. A. Delev
Condensed Matter


A new structure of the elastic field of a chiral nematic liquid crystal in a cylindrical capillary with a singularity on the axis of the capillary in the form of a “melted” helical disclination has been obtained experimentally. It has been shown theoretically that the number of cylindrical surfaces, cascades at which a jump of the direction of the director orientation field n by π occurs, can be arbitrary. The particular number of cascades depends on the radius R of the cylinder and boundary conditions. An expression for the free energy of the elastic field has been obtained in the one-constant approximation of the continuum theory of liquid crystals.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. G. de Gennes, Liquid Crystals (Clarendon, Oxford, 1974).zbMATHGoogle Scholar
  2. 2.
    M. Kleman and O. D. Lavrentovich, Soft Matter Physics: An Introduction (Partially Ordered Systems) (Springer, Berlin, Heidelberg, 2002; Fizmatlit, Moscow, 2007).Google Scholar
  3. 3.
    Defects in Liquid Crystals: Computer Simulations, Theory and Experiments, Ed. by O. Lavrentovich, P. Pasini, C. Zannoni, and S. Zumer (Springer, Netherlands, 2001).Google Scholar
  4. 4.
    M. V. Kurik and O. D. Lavrentovich, Sov. Phys. Usp. 31, 196 (1988).ADSCrossRefGoogle Scholar
  5. 5.
    O. A. Skaldin, V. A. Delev, E. S. Shikhovtseva, Yu. A. Lebedev, and E. S. Batyrshin, J. Exp. Theor. Phys. 121, 1082 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    G. Posnjak, S. Copar, and I. Muševič, Sci. Rep. 6, 26361 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    J. Yoshioka and F. Araoka, Nat. Commun. 9, 432 (2018).ADSCrossRefGoogle Scholar
  8. 8.
    G. H. Kim, W.-J. Lee, H. N. Kim, and Y.-H. Kim, Mol. Cryst. Liq. Cryst. 633, 72 (2016).CrossRefGoogle Scholar
  9. 9.
    M. Humar and I. Muševič, Opt. Express 18, 26995 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    H. Yokoyama, Nat. Photon. 3, 560 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    G. E. Volovik, JETP Lett. 28, 59 (1978).ADSGoogle Scholar
  12. 12.
    G. E. Volovik and O. D. Lavrentovich, Sov. Phys. JETP 58, 1159 (1983).Google Scholar
  13. 13.
    R. V. Meyer, Mol. Cryst. Liq. Cryst. 16, 355 (1972).CrossRefGoogle Scholar
  14. 14.
    S. Candau, P. LeRoy, and F. Debeauvais, Mol. Cryst. Liq. Cryst. 23, 283 (1973).CrossRefGoogle Scholar
  15. 15.
    V. K. Pershin and I. I. Klebanov, Crystallogr. Rep. 45, 307 (2000).ADSCrossRefGoogle Scholar
  16. 16.
    O. A. Skaldin, Yu. I. Timirov, and Yu. A. Lebedev, Tech. Phys. Lett. 36, 885 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1987; Pergamon, New York, 1986).Google Scholar
  18. 18.
    S. V. Burylov, J. Exp. Theor. Phys. 85, 873 (1997).ADSCrossRefGoogle Scholar
  19. 19.
    V. K. Pershin, I. I. Klebanov, and P. B. Zalmanov, Tech. Phys. 44, 763 (1999).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • O. A. Skaldin
    • 1
  • I. I. Klebanov
    • 2
    • 3
  • Yu. I. Timirov
    • 1
  • E. R. Basyrova
    • 1
  • V. A. Delev
    • 1
  1. 1.Institute of Molecule and Crystal Physics, Ufa Federal Research CenterRussian Academy of SciencesUfaRussia
  2. 2.South Ural State Humanitarian Pedagogical UniversityChelyabinskRussia
  3. 3.South Ural State University (National Research University)ChelyabinskRussia

Personalised recommendations