Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Structure-Dependent Magnetoresistance in the Zn0.1Cd0.9GeAs2 + MnAs Hybrid Nanocomposite

  • 29 Accesses

Abstract

The effect of high pressure on electron transport and on the field dependence of the transverse magnetoresistance has been studied in a hybrid nanocomposite based on the Zn0.1Cd0.9GeAs2 matrix and MnAs clusters. A record high negative magnetoresistance of ~74% is formed near a pressure-induced structural transition (P≈ 3.5 GPa). The considered scattering mechanisms include both the contribution from MnAs clusters at relatively low pressures (up to 0.7 GPa) and spin-dependent scattering by localized magnetic moments in the Mn-substituted structure of the matrix in the region of the structural transition. The presence of the positive magnetoresistance region associated with the two-band transport model in the high-pressure phase, as well as the large negative magnetoresistance, is described in the framework of the semiempirical Khosla–Fischer expression.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    I. S. Beloborodov, A. V. Lopatin, V. M. Vinokur, and K. B. Efetov, Rev. Mod. Phys. 79, 469 (2007).

  2. 2.

    S. Mitani, S. Takahashi, K. Takanashi, K. Yakushiji, S. Maekawa, and H. Fujimori, Phys. Rev. Lett. 81, 2799 (1998).

  3. 3.

    P. N. Hai, S. Ohya, M. Tanaka, S. E. Barnes, and S. Maekawa, Nature (London, U.K.. 458, 489 (2009).

  4. 4.

    D. W. Rench, P. Schiffer, and N. Samarth, Phys. Rev.. 84, 094434 (2011).

  5. 5.

    P. N. Hai, S. Ohya, and M. Tanaka, Nat. Nanotech. 5, 593 (2010).

  6. 6.

    C. Michel, M. T. Elm, B. Goldlücke, S. D. Baranovskii, P. Thomas, W. Heimbrodt, and P. J. Klar, Appl. Phys. Lett. 92, 223119 (2008).

  7. 7.

    A. García-García, A. Vovk, J. A. Pardo, P. Štrichovanec, P. A. Algarabel, C. Magén, J. M. de Teresa, L. Morellón, and M. R. Ibarra, J. Appl. Phys. 107, 033704 (2010).

  8. 8.

    S. Kaji, G. Oomi, M. Hedo, Y. Uwatoko, S. Mitani, K. Takanashi, S. Takahashi, and S. Maekawa, J. Phys. Soc. Jpn. 74, 2783 (2005).

  9. 9.

    E. I. Yakovleva, L. N. Oveshnikov, A. V. Kochura, K.G. Lisunov, E. Läkhderanta, and B. A. Aronzon, JETP Lett. 101, 130 (2015).

  10. 10.

    Yu. K. Wakabayashi, R. Akiyama, Yu. Takeda, M. Horio, G. Shibata, Sh. Sakamoto, Y. Ban, Y. Saitoh, H. Yamagami, A. Fujimori, M. Tanaka, and Sh. Ohya, Phys. Rev.. 95, 014417 (2017).

  11. 11.

    E. Lähderanta, A. V. Lashkul, A. V. Kochura, K.G. Lisunov, B. A. Aronzon, and M. A. Shakhov, Phys. Status Solid. 211, 991 (2014).

  12. 12.

    M. Yokoyama, T. Ogawa, A. M. Nazmul, and M. Tanaka, J. Appl. Phys. 99, 08D502 (2006).

  13. 13.

    A. P. Li, J. F. Wendelken, J. Shen, L. C. Feldman, J. R. Thompson, and H. H. Weitering, Phys. Rev.. 72, 195205 (2005).

  14. 14.

    Y. D. Park, A. Wilson, A. T. Hanbicki, J. E. Mattson, T. Ambrose, G. Spanos, and B. T. Jonker, Appl. Phys. Lett. 78, 2739 (2001).

  15. 15.

    P. J. Wellmann, J. M. Garcia, J.-L. Feng, and P. M. Petroff, Appl. Phys. Lett. 73, 3291 (1998).

  16. 16.

    M. T. Elm, P. J. Klar, S. Ito, and S. Hara, Phys. Rev.. 83, 235305 (2011).

  17. 17.

    M. Jamet, A. Barski, T. Devillers, V. Poydenot, R. Dujardin, P. Bayle-Guillemaud, J. Rothman, E. Bellet- Amalric, A. Marty, J. Cibert, R. Mattana, and S. Tatarenko, Nat. Mater. 5, 653 (2006).

  18. 18.

    L. Kilanski, W. Dobrowolski, E. Dynowska, M. Wójcik, B. J. Kowalski, N. Nedelko, A. Slawska-Waniewska, D. K. Maude, S. A. Varnavskiy, I. V. Fedorchenko, and S. F. Marenkin, Solid State Comm. 151, 870 (2011).

  19. 19.

    T. R. Arslanov, A. Yu. Mollaev, I. K. Kamilov, R. K. Arslanov, L. Kilanski, R. Minikaev, A. Reszka, S. López-Moreno, A. H. Romero, M. Ramzan, P. Panigrahi, R. Ahuja, V. M. Trukhan, T. Chatterji, S. F. Marenkin, and T. V. Shoukavaya, Sci. Rep. 5, 7720 (2015).

  20. 20.

    T. R. Arslanov, R. K. Arslanov, L. Kilanski, T. Chatterji, I. V. Fedorchenko, R. M. Emirov, and A. I. Ril, Phys. Rev.. 94, 184427 (2016).

  21. 21.

    I. V. Fedorchenko, A. N. Aronov, L. Kilanski, V. Domukhovski, A. Reszka, B. J. Kowalski, E. Lahderanta, W. Dobrowolski, A. D. Izotov, and S. F. Marenkin, J. Alloys Compd. 599, 121 (2014).

  22. 22.

    S. F. Marenkin, A. D. Izotov, I. V. Fedorchenko, and V.M. Novotortsev, Russ. J. Inorg. Chem. 60, 295 (2015).

  23. 23.

    L. G. Khvostantsev, V. N. Slesarev, and V. V. Brazhkin, High Press. Res. 24, 371 (2004).

  24. 24.

    L. Kilanski, I. V. Fedorchenko, M. Górska, A. Šlawska- Waniewska, N. Nedelko, A. Podgórni, A. Avdonin, E. Lähderanta, W. Dobrowolski, A. N. Aronov, and S. F. Marenkin, J. Appl. Phys. 118, 103906 (2015).

  25. 25.

    R. K. Arslanov, T. R. Arslanov, U. Z. Zalibekov, and I. V. Fedorchenko, Phys. Solid Stat. 59, 483 (2017).

  26. 26.

    L. Kilanski, A. Reszka, M. Górska, V. Domukhovski, A. Podgórni, B. J. Kowalski, W. Dobrowolski, I. V. Fedorchenko, A. N. Aronov, and S. F. Marenkin, J. Phys.: Condens. Matte. 28, 495802 (2016).

  27. 27.

    A. Yu. Mollaev, R. K. Arslanov, I. K. Kamilov, T. R. Arslanov, U. Z. Zalibekov, and I. V. Fedorchenko, Russ. J. Inorg. Chem. 60 (8), 994 (2015).

  28. 28.

    T. R. Arslanov, L. Kilanski, S. López-Moreno, A. Yu.Mollaev, R. K. Arslanov, I. V. Fedorchenko, T. Chatterji, S. F. Marenkin, and R. M. Emirov, J. Phys. D: Appl. Phys. 49, 125007 (2016).

  29. 29.

    A. R. Strom, A. Jayaraman, and J. H. Wernick, J. Phys. Chem. Solid. 29, 623 (1968).

  30. 30.

    R. P. Khosla and J. R. Fischer, Phys. Rev.. 2, 4084 (1970).

  31. 31.

    A. B. Pippard, Magnetoresistance in Metals (Cambridge Univ. Press, Cambridge, 1988).

  32. 32.

    S. A. Solin, T. Thio, D. R. Hines, and J. J. Heremans, Science (Washington, DC, U. S.. 289, 1530 (2000).

  33. 33.

    J. A. Peters, N. D. Parashar, N. Rangaraju, and B. W. Wessels, Phys. Rev.. 82, 205207 (2010).

  34. 34.

    M. Csontos, T. Wojtowicz, X. Liu, M. Dobrowolska, B. Jankó, J. K. Furdyna, and G. Mihály, Phys. Rev. Lett. 95, 227203 (2005).

  35. 35.

    A. Yu. Mollaev, I. K. Kamilov, R. K. Arslanov, T. R. Arslanov, U. Z. Zalibekov, V. M. Novotortsev, and S. F. Marenkin, JETP Lett. 91, 478 (2010).

Download references

Author information

Correspondence to R. K. Arslanov.

Additional information

Original Russian Text © R.K. Arslanov, T.R. Arslanov, I.V. Fedorchenko, L. Kilanski, T. Chatterji, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 107, No. 10, pp. 643–649

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arslanov, R.K., Arslanov, T.R., Fedorchenko, I.V. et al. Structure-Dependent Magnetoresistance in the Zn0.1Cd0.9GeAs2 + MnAs Hybrid Nanocomposite. Jetp Lett. 107, 612–617 (2018). https://doi.org/10.1134/S0021364018100041

Download citation