Effects of Superaging and Percolation Crossover on the Nonequilibrium Critical Behavior of the Two-Dimensional Disordered Ising Model
- 19 Downloads
- 2 Citations
Abstract
A Monte Carlo study of the specific features of the nonequilibrium critical behavior has been performed for the two-dimensional “pure” and structurally disordered Ising models in the course of their evolution from the low-temperature initial state at spin concentrations p = 1.0, 0.9, and 0.8. It is shown for the first time that the pinning of domain walls by structural defects leads to the anomalously strong slowing down in the evolution of the autocorrelation function characterized by the superaging effect with exponents μ = 6.25(5) and μ = 6.75(5) for the model with the spin concentrations p = 0.9 and 0.8, respectively. The pure model exhibits the conventional aging with the exponent μ = 1. It is found that the superaging effects in structurally disordered systems lead to vanishing of the limiting fluctuation−dissipation ratio X∞, whereas X∞ = 0.751(24) for the pure model.
Preview
Unable to display preview. Download preview PDF.
References
- 1.P. Calabrese and A. Gambassi, J. Phys. A. 38, R133 (2005).ADSCrossRefGoogle Scholar
- 2.V. V. Prudnikov, P. V. Prudnikov, and M. V. Mamonova, Phys. Usp. 60, 762 (2017).ADSCrossRefGoogle Scholar
- 3.L. Berthier and J. Kurchan, Nat. Phys. 9, 310 (2013).CrossRefGoogle Scholar
- 4.Vik. S. Dotsenko and Vl. S. Dotsenko, JETP Lett. 33, 37 (1981).ADSGoogle Scholar
- 5.B. N. Shalaev, Sov. Phys. Solid State 26, 1089 (1984).Google Scholar
- 6.B. N. Shalaev, Phys. Rep. 237, 129 (1994).ADSMathSciNetCrossRefGoogle Scholar
- 7.O. N. Markov and V. V. Prudnikov, JETP Lett. 60, 23 (1994).ADSGoogle Scholar
- 8.V. V. Prudnikov and O. N. Markov, Europhys. Lett. 29, 245 (1995).ADSCrossRefGoogle Scholar
- 9.M. P. Nightingale and H. W. J. Blote, Phys. Rev. Lett. 76, 4548 (1996).ADSCrossRefGoogle Scholar
- 10.L. N. Shchur and O. A. Vasilyev, Phys. Rev. E 65, 016107 (2001).ADSCrossRefGoogle Scholar
- 11.P. Calabrese, A. Gambassi, and F. Krzakala, J. Stat. Mech. 6, 2 (2006).Google Scholar
- 12.V. V. Prudnikov, P. V. Prudnikov, I. A. Kalashnikov, and S. S. Tsirkin, J. Exp. Theor. Phys. 106, 1095 (2008).ADSCrossRefGoogle Scholar
- 13.V. V. Prudnikov, P. V. Prudnikov, E. A. Pospelov, and A. N. Vakilov, Phys. Lett. A 379, 774 (2015).CrossRefGoogle Scholar
- 14.P. V. Prudnikov, V. V. Prudnikov, and E. A. Pospelov, JETP Lett. 98, 619 (2013).CrossRefGoogle Scholar
- 15.M. Henkel and M. Pleimling, Non-Equilibrium Phase Transitions (Springer, Heidelberg, 2010), Vol.2.Google Scholar
- 16.C. K. Harris and R. B. Stinchcombe, Phys. Rev. Lett. 56, 869 (1986).ADSCrossRefGoogle Scholar
- 17.V. V. Prudnikov, P. V. Prudnikov, A. N. Purtov, and M. V. Mamonova, JETP Lett. 104, 776 (2016).ADSCrossRefGoogle Scholar
- 18.A. B. Drovosekov, N. M. Kreines, D. I. Kholin, A. V. Korolev, M. A. Milyaev, L. N. Romashev, and V. V. Ustinov, JETP Lett. 88, 118 (2008).ADSCrossRefGoogle Scholar
- 19.T. Mukherjee, M. Pleimling, and Ch. Binek, Phys. Rev. B 82, 134425 (2010).ADSCrossRefGoogle Scholar