Advertisement

JETP Letters

, Volume 107, Issue 9, pp 558–563 | Cite as

Anomalous Behavior of an α → γ Phase Transition in Iron: Results of In Situ Neutron Diffraction Experiment

  • A. M. Balagurov
  • I. A. BobrikovEmail author
  • I. S. Golovin
Condensed Matter

Abstract

Neutron diffraction studies of a α → γ structural phase transition (Tc ≈ 911°C) in iron samples at different initial states have been performed. The anomalous disappearance of a diffraction pattern is observed in iron in the region of the α → γ phase transition. At repeated heating processes of an as cast sample, this effect becomes less pronounced and it is absent at the heating of iron powder. The observed effects have been assumingly attributed to the formation of small paracrystalline clusters with a large dispersion of the cell parameters in the process of phase transition. The kinetics of formation of clusters is slowed in as cast samples, which leads to the temporal disappearance of the diffraction pattern. These results make it possible to reconsider the atomic processes in the α → γ phase transition in iron.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Sandoval, H. M. Urbassek, and P. Entel, New J. Phys. 11, 103027 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    I. Leonov, A. I. Poteryaev, V. I. Anisimov, and D. Vollhardt, Phys. Rev. Lett. 106, 106405 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    I. K. Razumov, Yu. N. Gornostyrev, and M. I. Katsnelson, Phys. Met. Metallogr. 118, 362 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    X. Ou, Mater. Sci. Technol. 33, 822 (2017).CrossRefGoogle Scholar
  5. 5.
    E. C. Bain, Trans. AIME 70, 25 (1924).Google Scholar
  6. 6.
    G. V. Kurdyumov, L. M. Utevskii, and R. I. Entin, Transformations in Iron and Steel (Nauka, Moscow, 1977) [in Russian].Google Scholar
  7. 7.
    A. M. Balagurov, Neutron News 16, 8 (2005).CrossRefGoogle Scholar
  8. 8.
    A. M. Balagurov, I. A. Bobrikov, G. D. Bokuchava, V. V. Zhuravlev, and V. G. Simkin, Phys. Part. Nucl. 46, 249 (2015).CrossRefGoogle Scholar
  9. 9.
  10. 10.
    V. B. Zlokazov, I. A. Bobrikov, and A. M. Balagurov, Eur. Phys. J. 108, 02049 (2016).Google Scholar
  11. 11.
    A. M. Balagurov, I. A. Bobrikov, B. Mukhametuly, S. V. Sumnikov, and I. S. Golovin, JETP Lett. 104, 539 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    A. M. Balagurov, I. S. Golovin, I. A. Bobrikov, V. V. Palacheva, S. V. Sumnikov, and V. B. Zlokazov, J. Appl. Crystallogr. 50, 198 (2017).CrossRefGoogle Scholar
  13. 13.
    S. M. Sharma and S. K. Sikka, Prog. Mater. Sci. 40, 1 (1996).CrossRefGoogle Scholar
  14. 14.
    S. V. Popova, V. V. Brazhkin, R. N. Voloshin, and M. Grimsdich, Phys. Usp. 45, 445 (2002).ADSCrossRefGoogle Scholar
  15. 15.
    I. M. Shmyt’ko, E. A. Kudrenko, V. V. Sinitsyn, B. S. Red’kin, and E. G. Ponyatovskii, Phys. Solid State 49, 941 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    S. I. Mednikov and D. M. Gureev, Sov. Tech. Phys. 36, 278 (1991).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. M. Balagurov
    • 1
    • 2
  • I. A. Bobrikov
    • 1
    Email author
  • I. S. Golovin
    • 3
  1. 1.Joint Institute for Nuclear ResearchDubna, Moscow regionRussia
  2. 2.Moscow State UniversityMoscowRussia
  3. 3.National University of Science and Technology MISiSMoscowRussia

Personalised recommendations