Graphite, graphene and the flat band superconductivity

Article
  • 2 Downloads

Abstract

Superconductivity has been observed in bilayer graphene [1,2]. The main factor, which determines the mechanism of the formation of this superconductivity is the "magic angle" of twist of two graphene layers, at which the electronic band structure becomes nearly flat. The specific role played by twist and by the band flattening, has been earlier suggested for explanations of the signatures of room-temperature superconductivity observed in the highly oriented pyrolytic graphite (HOPG), when the quasi two-dimensional interfaces between the twisted domains are present. The interface contains the periodic array of misfit dislocations (analogs of the boundaries of the unit cell of the Moire superlattice in bilayer graphene), which provide the possible source of the flat band. This demonstrates that it is high time for combination of the theoretical and experimental efforts in order to reach the reproducible room-temperature superconductivity in graphite or in similar real or artificial materials.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Cao, V. Fatemi, Sh. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras and P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices, Nature (2018), doi:10.1038/nature26160.Google Scholar
  2. 2.
    Y. Cao, V. Fatemi, A. Demir, Sh. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Correlated insulator behaviour at half-filling in magic-angle graphene superlattices, Nature (2018), doi:10.1038/nature26154.Google Scholar
  3. 3.
    P. Esquinazi, T. T. Heikkila, Yu. V. Lysogorskiy, D. A. Tayurskii, G. E. Volovik, JETP Lett. 100, 336 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    P. Esquinazi, Papers in Physics 5, 050007 (2013).Google Scholar
  5. 5.
    A. Ballestar, J. Barzola-Quiquia, T. Scheike, and P. Esquinazi, New J. Phys. 15, 023024 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    A. Ballestar, T. T. Heikkilä, and P. Esquinazi, Supercond Sci. Technol. 27, 115014 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    C. E. Precker, P. D. Esquinazi, A. Champi, J. Barzola-Quiquia, M. Zoraghi, S. Muinos-Landin, A. Setzer, W. Böhlmann, D. Spemann, J. Meijer, T. Muenster, O. Baehre, G. Kloess, and H. Beth, New J. Phys. 18, 113041 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    M. Stiller, P. D. Esquinazi, J. Barzola-Quiquia, and C. E. Precker, J. Low Temp. Phys. 191, 105 (2018).ADSCrossRefGoogle Scholar
  9. 9.
    P. D. Esquinazi, Papers in Physics 5, 050009 (2013).Google Scholar
  10. 10.
    V. A. Khodel and V. R. Shaginyan, JETP Lett. 51, 553 (1990).ADSGoogle Scholar
  11. 11.
    S. T. Belyaev, JETP 12, 968 (1961).Google Scholar
  12. 12.
    T. T. Heikkilä and G. E. Volovik, in: Basic Physics of Functionalized Graphite, Springer (2016), pp. 123–143.Google Scholar
  13. 13.
    T. T. Heikkilä, N. B. Kopnin, and G. E. Volovik, JETP Lett. 94, 233 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    T. Hyart, R. Ojajärvi, and T. T. Heikkilä, J. Low Temp. Phys. 191, 35 (2018).ADSCrossRefGoogle Scholar
  15. 15.
    H. K. Pal, S. Spitz, and M. Kindermann, Emergent geometric frustration and flat band in moire bilayer graphene, arXiv:1803.07060.Google Scholar
  16. 16.
    E. H. Lieb, Phys. Rev. Lett. 62, 1201 (1989).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    R. Bistritzer and A. H. MacDonald, PNAS 108, 12233 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    G. E. Volovik, JETP Lett. 53, 222 (1991).ADSGoogle Scholar
  19. 19.
    P. Nozieres, J. Phys. (Fr.) 2, 443 (1992).ADSCrossRefGoogle Scholar
  20. 20.
    D. Yudin, D. Hirschmeier, H. Hafermann, O. Eriksson, A. I. Lichtenstein, and M. I. Katsnelson, Phys. Rev. Lett. 112, 070403 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    G. E. Volovik, JETP Lett. 59, 830 (1994).ADSGoogle Scholar
  22. 22.
    A. A. Shashkin, V. T. Dolgopolov, J. W. Clark, V. R. Shaginyan, M. V. Zverev, and V. A. Khodel, Phys. Rev. Lett. 112, 186402 (2014).ADSCrossRefGoogle Scholar
  23. 23.
    M. Yu. Melnikov, A. A. Shashkin, V. T. Dolgopolov, S.-H. Huang, C. W. Liu, S. V. Kravchenko, Scientific Reports 7, 14539 (2017).ADSCrossRefGoogle Scholar
  24. 24.
    E. Tang and L. Fu, Nature Phys. 10, 964 (2014).ADSCrossRefGoogle Scholar
  25. 25.
    F. de Juan, J. L. Manes, and M. A. H. Vozmediano, Phys. Rev. B 87, 165131 (2013).ADSCrossRefGoogle Scholar
  26. 26.
    V. J. Kauppila, F. Aikebaier, and T. T. Heikkilä, Phys. Rev. B 93, 214505 (2016).ADSCrossRefGoogle Scholar
  27. 27.
    A. Ramires and J. L. Lado, Electrically tunable gauge fields in tiny-angle twisted bilayer graphene, arXiv:1803.04400.Google Scholar
  28. 28.
    G. P. Mikitik and Yu. V. Sharlai, Phys. Rev. B 90, 155122 (2014).ADSCrossRefGoogle Scholar
  29. 29.
    G. P. Mikitik and Yu. V. Sharlai, Phys. Rev. B 73, 235112 (2006).ADSCrossRefGoogle Scholar
  30. 30.
    G. P. Mikitik and Yu. V. Sharlai, Low Temp. Phys. 34, 794 (2008).ADSCrossRefGoogle Scholar
  31. 31.
    N. B. Kopnin, JETP Lett. 94, 81 (2011).ADSCrossRefGoogle Scholar
  32. 32.
    N. B. Kopnin, M. Ijäs, A. Harju, and T. T. Heikkilä, Phys. Rev. B 87, 140503(R) (2013).ADSCrossRefGoogle Scholar
  33. 33.
    L. Liang, T. I. Vanhala, S. Peotta, T. Siro, A. Harju, and P. Torma, Phys. Rev. B 95, 024515 (2017).ADSCrossRefGoogle Scholar
  34. 34.
    R. Ojajärvi, T. Hyart, M. Silaev, and T. T. Heikkilä, Competition of electron-phonon mediated superconductivity and Stoner magnetism on a flat band, arXiv:1801.01794.Google Scholar
  35. 35.
    H. Tasaki, Phys. Rev. Lett. 69, 1608 (1992).ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    A. Mielke and H. Tasaki, Commun. Math. Phys. 158, 341 (1993).ADSCrossRefGoogle Scholar
  37. 37.
    T. Löthman and A. M. Black-Schaffer, Phys. Rev. B 96, 064505 (2017).ADSCrossRefGoogle Scholar
  38. 38.
    Y. Kopelevich, V. V. Lemanov, S. Moehlecke, and J. H. S. Torres, Phys. Solid State 41, 1959 (1999).ADSCrossRefGoogle Scholar
  39. 39.
    Y. Kopelevich, P. Esquinazi, J. H. S. Torres, and S. Moehlecke, J. Low Temp. Phys. 119, 691 (2000).ADSCrossRefGoogle Scholar
  40. 40.
    Y. Kawashima, AIP Advances 3, 052132 (2013).ADSCrossRefGoogle Scholar
  41. 41.
    Y. Kawashima, Observation of the Meissner effect at room temperature in single-layer graphene brought into contact with alkanes, arXiv:1801.09376.Google Scholar
  42. 42.
    A. N. Ionov, Techn. Phys. Lett. 41, 651 (2015).ADSCrossRefGoogle Scholar
  43. 43.
    A. N. Ionov, J. Low Temp. Phys. 185, 515 (2016).ADSCrossRefGoogle Scholar
  44. 44.
    A. R. Khairullin, M. N. Nikolaeva, and A. N. Bugrov, Nanosystems 7, 1055 (2016).Google Scholar
  45. 45.
    R. R. da Silva, J. H. S. Torres, and Y. Kopelevich, Phys. Rev. Lett. 87, 147001 (2001).ADSCrossRefGoogle Scholar
  46. 46.
    I. Felner, Magnetochemistry 2, 34 (2016).CrossRefGoogle Scholar
  47. 47.
    G. Larkins, Y. Vlasov, and K. Holland, Supercond. Sci. Technol. 29, 015015 (2016).ADSCrossRefGoogle Scholar
  48. 48.
    Frank Arnold PhD (Royal Holloway University of London), 2015, and private communication J. Saunders.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Low Temperature LaboratoryAalto UniversityAaltoFinland
  2. 2.Landau Institute for Theoretical PhysicsChernogolovkaRussia

Personalised recommendations