JETP Letters

, Volume 107, Issue 5, pp 307–310 | Cite as

Long-Lived Quantum Vortex Knots

  • V. P. Ruban
Condensed Matter


The dynamics of the simplest torus quantum vortex knots in a superfluid at zero temperature has been simulated with a regularized Biot–Savart law (the torus radii R0 and r0 for the initial vortex configuration are much larger than the width of the vortex core ). The evolution times of knots until their significant deformation have been calculated with a small step in the parameter B0 = r0/R0 for different values of the parameter Λ = log(R0/ξ). It has been found that regions of quasi-stability appear at Λ ≳ 3 in the range B0 ≲ 0.2, which correspond to long knot lifetimes and very large traveling distances up to several hundred R0. This result is new and quite surprising because previously it was believed that the maximum lifetime of torus knots until reconnection does not exceed several typical periods. The opening of quasi-stable “windows” at increasing Λ is due to narrowing of main parametric resonances of the dynamic system in the parameter B0.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. L. Ricca, D. C. Samuels, and C. F. Barenghi, J. Fluid Mech. 391, 29 (1999).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    F. Maggioni, S. Alamri, C. F. Barenghi, and R. L. Ricca, Phys. Rev. E 82, 026309 (2010).ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    D. Proment, M. Onorato, and C. F. Barenghi, Phys. Rev. E 85, 036306 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    D. Kleckner and W. T. M. Irvine, Nat. Phys. 9, 253 (2013).CrossRefGoogle Scholar
  5. 5.
    D. Proment, M. Onorato, and C. F. Barenghi, J. Phys.: Conf. Ser. 544, 012022 (2014).Google Scholar
  6. 6.
    P. Clark di Leoni, P. D. Mininni, and M. E. Brachet, Phys. Rev. A 94, 043605 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    D. Kleckner, L. H. Kauffman, and W. T. M. Irvine, Nat. Phys. 12, 650 (2016).CrossRefGoogle Scholar
  8. 8.
    K. W. Schwarz, Phys. Rev. B 31, 5782 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    M. Tsubota, T. Araki, and S. K. Nemirovskii, Phys. Rev. B 62, 11751 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    A. W. Baggaley and C. F. Barenghi, Phys. Rev. B 83, 134509 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    N. G. Berloff and P. H. Roberts, J. Phys. A: Math. Gen. 32, 5611 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    N. G. Berloff, M. Brachet, and N. P. Proukakis, Proc. Natl. Acad. Sci. U. S. A. 111, 4675 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    S. K. Adhikari and L. Salasnich, Phys. Rev. A 77, 033618 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    M. D. Bustamante and S. Nazarenko, Phys. Rev. E 92, 053019 (2015).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia

Personalised recommendations