Advertisement

JETP Letters

, Volume 107, Issue 4, pp 223–227 | Cite as

Thermally Induced Depolarization of the Photoluminescence of Carbon Nanodots in a Colloidal Matrix

  • A. N. Starukhin
  • D. K. Nelson
  • D. A. Kurdyukov
  • D. A. Eurov
  • E. Yu. Stovpiaga
  • V. G. Golubev
Condensed Matter
  • 19 Downloads

Abstract

The effect of temperature on fluorescence polarization in a colloidal system of carbon nanodots in glycerol under linearly polarized excitation is investigated for the first time. It is found that the experimentally obtained temperature dependence of the degree of linear polarization of fluorescence can be described by the Levshin–Perrin equation, taking into account the rotational diffusion of luminescent particles (fluorophores) in the liquid matrix. The fluorophore size determined in the context of the Levshin–Perrin model is significantly smaller than the size of carbon nanodots. This discrepancy gives evidence that small atomic groups responsible for nanodot luminescence are characterized by high segmental mobility with a large amplitude of motion with respect to the nanodot core.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. S. Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, H. Yang, M. E. Kose, B. Chen, L. M. Veca, and S.-Y. Xie, J. Am. Chem. Soc. 128, 7756 (2006).CrossRefGoogle Scholar
  2. 2.
    A. B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, V. Georgakilas, and E. P. Gia, Chem. Mater. 20, 4539 (2008).CrossRefGoogle Scholar
  3. 3.
    Y. Wang and A. Hu, J. Mater. Chem. C 2, 6921 (2014).CrossRefGoogle Scholar
  4. 4.
    M. A. Jhonsi and S. Thulasi, Chem. Phys. Lett. 616, 179 (2016).CrossRefGoogle Scholar
  5. 5.
    X. Wang, L. Cao, S.-T. Yang, F. Lu, M. J. Meziani, L. Tian, K. W. Sun, M. A. Bloodgood, and Y.-P. Sun, Angew. Chem. Int. Ed. 49, 5310 (2010).CrossRefGoogle Scholar
  6. 6.
    H. Peng and J. Travas-Sejdic, Chem. Mater. 21, 5563 (2009).CrossRefGoogle Scholar
  7. 7.
    R. Jelinek, Carbon Quantum Dots (Springer Int., Switzerland, 2017).CrossRefGoogle Scholar
  8. 8.
    S.-T. Yang, X. Wang, H. Wang, F. Lu, P. G. Luo, L. Cao, M. J. Meziani, J.-H. Liu, Y. Liu, M. Chen, Y. Huang, and Y.-P. Sun, J. Phys. Chem. C 113, 18110 (2009).CrossRefGoogle Scholar
  9. 9.
    F. Yuan, S. Li, Z. Fan, X. Meng, L. Fan, and S. Yang, Nano Today 11, 565 (2016).CrossRefGoogle Scholar
  10. 10.
    J. Joseph and A. A. Anappara, Chem. Phys. Chem. 18, 292 (2017).CrossRefGoogle Scholar
  11. 11.
    F. Wang, M. Kreiter, B. He, S. Pang, and C.-Y. Liu, Chem. Commun. 46, 3309 (2010).CrossRefGoogle Scholar
  12. 12.
    P. P. Feofilov, The Physical Basic of Polarized Emission (Fizmatgiz, Moscow, 1959; Consultants Bureau, New York, 1961).zbMATHGoogle Scholar
  13. 13.
    D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, San Diego, 1990).Google Scholar
  14. 14.
    J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer Science, New York, 2006).CrossRefGoogle Scholar
  15. 15.
    J. Zong, Y. Zhu, X. Yang, J. Shen, and C. Li, Chem. Commun. 47, 764 (2011).CrossRefGoogle Scholar
  16. 16.
    D. A. Kurdyukov, D. A. Eurov, E. Y. Stovpiaga, D. A. Kirilenko, S. V. Konyakhin, A. V. Shvidchenko, and V. G. Golubev, Phys. Solid State 58, 2545 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    S. N. Jasperson and S. E. Schnatterly, Rev. Sci. Instrum. 40, 761 (1969).ADSCrossRefGoogle Scholar
  18. 18.
    D. K. Nelson, B. S. Razbirin, A. N. Starukhin, D. A. Eurov, D. A. Kurdyukov, E. Yu. Stovpiaga, and V. G. Golubev, Opt. Mater. 59, 28 (2016).ADSCrossRefGoogle Scholar
  19. 19.
    D. A. Fridrikhsberg, Course of Colloid Chemistry (Khimiya, Leningrad, 1974).Google Scholar
  20. 20.
    Physical Properties of Glycerine and Its Solutions (Glycerine Producers’ Association, New York, 1963).Google Scholar
  21. 21.
    A. Sharma, T. Gadly, A. Gupta, A. Ballal, S. K. Ghosh, and M. Kumbhakar, J. Phys. Chem. Lett. 7, 3695 (2016).CrossRefGoogle Scholar
  22. 22.
    M. O. Dekaliuk, O. Viagin, Y. V. Malyukin, and A. P. Demchenko, Phys. Chem. Chem. Phys. 16, 16075 (2014).CrossRefGoogle Scholar
  23. 23.
    J. R. Unruh, G. Gokulrangan, G. H. Lushington, C. K. Johnson, and G. S. Wilson, Biophys. J. 88, 3455 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. N. Starukhin
    • 1
  • D. K. Nelson
    • 1
  • D. A. Kurdyukov
    • 1
    • 2
  • D. A. Eurov
    • 1
  • E. Yu. Stovpiaga
    • 1
  • V. G. Golubev
    • 1
  1. 1.Ioffe InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia

Personalised recommendations