Advertisement

JETP Letters

, Volume 107, Issue 4, pp 233–237 | Cite as

Effect of the Semiconductor Quantum Dot Shell Structure on Fluorescence Quenching by Acridine Ligand

  • P. A. LinkovEmail author
  • K. V. Vokhmintcev
  • P. S. Samokhvalov
  • M. Laronze-Cochard
  • J. Sapi
  • I. R. Nabiev
Condensed Matter

Abstract

The main line of research in cancer treatment is the development of methods for early diagnosis and targeted drug delivery to cancer cells. Fluorescent semiconductor core/shell nanocrystals of quantum dots (e.g., CdSe/ZnS) conjugated with an anticancer drug, e.g., an acridine derivative, allow real-time tracking and control of the process of the drug delivery to tumors. However, linking of acridine derivatives to a quantum dot can be accompanied by quantum dot fluorescence quenching caused by electron transfer from the quantum dot to the organic molecule. In this work, it has been shown that the structure of the shell of the quantum dot plays the decisive role in the process of photoinduced charge transfer from the quantum dot to the acridine ligand, which is responsible for fluorescence quenching. It has been shown that multicomponent ZnS/CdS/ZnS shells of CdSe cores of quantum dots, which have a relatively small thickness, make it possible to significantly suppress a decrease in the quantum yield of fluorescence of quantum dots as compared to both the classical ZnS thin shell and superthick shells of the same composition. Thus, core/multicomponent shell CdSe/ZnS/CdS/ZnS quantum dots can be used as optimal fluorescent probes for the development of systems for diagnosis and treatment of cancer with the use of anticancer compounds based on acridine derivatives.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Shi, A. R. Votruba, O. C. Farokhzad, and R. Langer, Nano Lett. 10, 3223 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    A. Sukhanova, K. Even-Desrumeaux, A. Kisserli, T. Tabary, B. Reveil, J.-M. Millot, P. Chames, D. Baty, M. Artemyev, V. Oleinikov, M. Pluot, J. H. M. Cohen, and I. Nabiev, Nanomedicine 8, 516 (2012).CrossRefGoogle Scholar
  3. 3.
    R. Bilan, F. Fleury, I. Nabiev, and A. Sukhanova, Bioconjug. Chem. 26, 609 (2015).CrossRefGoogle Scholar
  4. 4.
    D. Dovzhenko, E. Osipov, I. Martynov, P. Linkov, and A. Chistyakov, Phys. Proc. 73, 126 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    P. Samokhvalov, M. Artemyev, and I. Nabiev, Chem.–Eur. J. 19, 1534 (2013).CrossRefGoogle Scholar
  6. 6.
    P. Linkov, M. Artemyev, A. E. Efimov, and I. Nabiev, Nanoscale 5, 8781 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    J.-Y. Zhao, G. Chen, Y.-P. Gu, R. Cui, Z.-L. Zhang, Z.-L. Yu, B. Tang, Y.-F. Zhao, and D.-W. Pang, J. Am. Chem. Soc. 138, 1893 (2016).CrossRefGoogle Scholar
  8. 8.
    K. D. Wegner and N. Hildebrandt, Chem. Soc. Rev. 44, 4792 (2015).CrossRefGoogle Scholar
  9. 9.
    M. Laronze-Cochard, Y.-M. M. Kim, B. Brassart, J.-F. F. Riou, J.-Y. Y. Laronze, and J. Sapi, Eur. J. Med. Chem. 44, 3880 (2009).CrossRefGoogle Scholar
  10. 10.
    S. Müller, S. Kumari, R. Rodriguez, and S. Balasubramanian, Nat. Chem. 2, 1095 (2010).CrossRefGoogle Scholar
  11. 11.
    A. Artese, G. Costa, S. Distinto, F. Moraca, F. Ortuso, L. Parrotta, and S. Alcaro, Eur. J. Med. Chem. 68, 139 (2013).CrossRefGoogle Scholar
  12. 12.
    A.-N. Cho, N. Chakravarthi, K. Kranthiraja, S. S. Reddy, H.-S. Kim, S.-H. Jin, and N.-G. Park, J. Mater. Chem. A 5, 7603 (2017).CrossRefGoogle Scholar
  13. 13.
    J. Jasieniak, M. Califano, and S. E. Watkins, ACS Nano 5, 5888 (2011).CrossRefGoogle Scholar
  14. 14.
    A. Islam, P. Murugan, K. C. Hwang, and C.-H. Cheng, Synth. Met. 139, 347 (2003).CrossRefGoogle Scholar
  15. 15.
    V. A. Krivenkov, D. O. Solovyeva, P. S. Samokhvalov, R. S. Grinevich, K. I. Brazhnik, G. E. Kotkovskii, E. P. Lukashev, and A. A. Chistyakov, Laser Phys. Lett. 11, 115601 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    J. Bang, J. Park, R. Velu, E. Yoon, K. Lee, S. Cho, S. Cha, G. Chae, T. Joo, and S. Kim, Chem. Commun. 48, 9174 (2012).CrossRefGoogle Scholar
  17. 17.
    P. Linkov, K. V. Vokhmintcev, P. S. Samokhvalov, and I. Nabiev, Opt. Spectrosc. 122, 8 (2017).ADSCrossRefGoogle Scholar
  18. 18.
    J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, J. Am. Chem. Soc. 125, 12567 (2003).CrossRefGoogle Scholar
  19. 19.
    Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, J. Am. Chem. Soc. 130, 5026 (2008).CrossRefGoogle Scholar
  20. 20.
    N. Razgoniaeva, P. Moroz, M. Yang, D. S. Budkina, H. Eckard, M. Augspurger, D. Khon, A. N. Tarnovsky, and M. Zamkov, J. Am. Chem. Soc. 139, 7815 (2017).CrossRefGoogle Scholar
  21. 21.
    P. Samokhvalov, P. Linkov, J. Michel, M. Molinari, and I. Nabiev, in Colloidal Nanoparticles for Biomedical Applications IX, Ed. by W. J. Parak, Proc. SPIE 8955, 89550S (2014).CrossRefGoogle Scholar
  22. 22.
    I.-S. Liu, H.-H. Lo, C.-T. Chien, Y.-Y. Lin, C.-W. Chen, Y.-F. Chen, W.-F. Su, and S.-C. Liou, J. Mater. Chem. 18, 675 (2008).CrossRefGoogle Scholar
  23. 23.
    J. Jasieniak, L. Smith, J. van Embden, P. Mulvaney, and M. Califano, J. Phys. Chem. C 113, 19468 (2009).CrossRefGoogle Scholar
  24. 24.
    P. Linkov, V. Krivenkov, I. Nabiev, and P. Samokhvalov, Mater. Today Proc. 3, 104 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • P. A. Linkov
    • 1
    • 2
    Email author
  • K. V. Vokhmintcev
    • 1
  • P. S. Samokhvalov
    • 1
  • M. Laronze-Cochard
    • 3
  • J. Sapi
    • 3
  • I. R. Nabiev
    • 1
    • 2
  1. 1.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  2. 2.Laboratory of Research in Nanosciences, LRN—EA4682University of Reims Champagne-ArdenneReimsFrance
  3. 3.Institute of Molecular Chemistry of Reims, Faculty of PharmacyUniversity of Reims Champagne-ArdenneReimsFrance

Personalised recommendations