JETP Letters

, Volume 107, Issue 2, pp 126–128 | Cite as

Effect of the Structural Disorder and Short-Range Order on the Electronic Structure and Magnetic Properties of the Fe2VAl Heusler Alloy

  • M. G. Kostenko
  • A. V. Lukoyanov
  • E. I. Shreder
Condensed Matter
  • 10 Downloads

Abstract

The Fe2VAl Heusler alloy is of great interest because ab initio calculations predict the absence of magnetization in it and a half-metal behavior with a pseudogap at the Fermi level. At the same time, experimental data (low-temperature specific heat, electrical resistivity, and magnetic properties) show that it is difficult to achieve such characteristics, and Fe2VAl samples usually have the characteristics of a poor magnetic metal. Ab initio calculations have been performed for ordered and disordered (Fe1–xV x )3Al Heusler alloys with x = 0.33. It has been shown that the alloy in a structurally ordered state (L21 structure) is a half-metal with a deep pseudogap at the Fermi level and does not have magnetization. At the same time, antisite defects in the iron and vanadium sublattices of the disordered alloy (D03 structure) lead to an increase in the conductivity and to the appearance of spin polarization and magnetization of (2.1±0.1)μB/f.u. The short-range order in the disordered phase has been generated by increasing the concentration of clusters characteristic of the bcc structure of α-Fe, which results in an increase in the magnetization to (2.5±0.1)μB/f.u.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Felser and A. Hirohata, Springer Ser. Mater. Sci. 222 (2016).Google Scholar
  2. 2.
    O. Kristanovski, R. Richter, I. Krivenko, A. I. Lichtenstein, and F. Lechermann, Phys. Rev. B. 95, 045114 (2017).ADSCrossRefGoogle Scholar
  3. 3.
    H. Okamura, J. Kawahara, T. Nanba, S. Kimura, K. Soda, U. Mizutani, Y. Nishino, M. Kato, I. Shimoyama, H. Miura, K. Fukui, K. Nakagawa, H. Nakagawa, and T. Kinoshita, Phys. Rev. Lett. 84, 3674 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    T. Naka, K. Sato, M. Taguchi, N. Shirakawa, T. Nakane, F. Ishikawa, Y. Yamada, Y. Takaesu, T. Nakama, and A. Matsushita, J. Phys.: Condens. Matter 28, 285601 (2016).Google Scholar
  5. 5.
    C.-S. Lue and J. H. Ross, Jr., Phys. Rev. B 58, 9763 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    S. Nishino, M. Kato, S. Asano, K. Soda, M. Hayasaki, and U. Mizutani, Phys. Rev. Lett. 79, 1909 (1997).ADSCrossRefGoogle Scholar
  7. 7.
    D. I. Bilc and P. Ghoswz, Phys. Rev. B 83, 205204 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    D. Do, M.-S. Lee, and S. D. Mahanti, Phys. Rev. B 84, 125104 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).ADSCrossRefGoogle Scholar
  10. 10.
    W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).ADSCrossRefGoogle Scholar
  11. 11.
    R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).ADSCrossRefGoogle Scholar
  12. 12.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    P. Giannozzi, S. Baroni, N. Bonini, et al., J. Phys.: Condens. Matter 21, 395502 (2009).Google Scholar
  14. 14.
    M. G. Kostenko, A. A. Rempel, S. V. Sharf, and A. V. Lukoyanov, JETP Lett. 97, 616 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    M. G. Kostenko, A. A. Rempel, S. V. Sharf, and A. V. Lukoyanov, JETP Lett. 102, 85 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • M. G. Kostenko
    • 1
  • A. V. Lukoyanov
    • 2
    • 3
  • E. I. Shreder
    • 2
  1. 1.Institute of Solid State Chemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Institute of Metal Physics, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  3. 3.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations