Advertisement

JETP Letters

, Volume 107, Issue 2, pp 100–105 | Cite as

Collective Infrared Excitation in LuB12 Cage-Glass

  • B. P. Gorshunov
  • E. S. Zhukova
  • G. A. Komandin
  • V. I. Torgashev
  • A. V. Muratov
  • Yu. A. Aleshchenko
  • S. V. Demishev
  • N. Yu. Shitsevalova
  • V. B. Filipov
  • N. E. Sluchanko
Optics and Laser Physics
  • 35 Downloads

Abstract

By measuring room temperature infrared (40–35000 cm–1) reflectivity of metallic LuB12 single crystals with different isotopic compositions (natB, 10B, 11B), we find that to model the spectrum we had to introduce, additionally to Drude free-carrier component, a broad excitation with unusually large dielectric contribution (Δε = 8000 ± 4000), which is characterized by a non-Lorentzian lineshape. It is suggested that the origin of the excitation is connected with cooperative dynamics of Jahn–Teller active B12 molecules producing quasilocal vibrations (rattling modes) of caged lutetium ions. The coupling of the Lu3+ rattling motions with the charge carriers of conduction band is proposed to be the reason of strongly damped character of the excitation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11448_2018_1630_MOESM1_ESM.pdf (76 kb)
Supplementary material, approximately 77 KB.

References

  1. 1.
    P. Alekseev, G. Grechnev, N. Shitsevalova, K. Siemensmeyer, N. Sluchanko, O. Zogal, and K. Flachbart, in Rare Earths: Research and Applications, Ed. by K. Delfrey (Nova, Commack, New York, 2008), Chap. 2, p. 79.Google Scholar
  2. 2.
    T. Mori, Boron Rich Solids: Sensors, Ultra High Temperature Ceramics, Thermoelectrics, Armor, NATO Science for Peace and Security Series (Springer, Berlin, Heidelberg, 2011).Google Scholar
  3. 3.
    A. V. Rybina, K. S. Nemkovski, P. A. Alekseev, J.-M.Mignot, E. S. Clementyev, M. Johnson, L. Capogna, A. V. Dukhnenko, A. B. Lyashenko, and V. B. Filippov, Phys. Rev. B 82, 024302 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    K. Nemkovski, P. A. Alekseev, J.-M. Mignot, A. V. Rybina, F. Iga, T. Takabatake, N. Yu. Shitsevalova, Yu. B. Paderno, V. N. Lazukov, E. V. Nefeodova, N. N. Tiden, and I. P. Sadikov, J. Solid State Chem. 179, 2895 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    M. Heinecke, K. Winzer, J. Noffke, H. Kranefeld, H. Grieb, K. Flachbart, and Y. B. Paderno, Z. Phys. B 98, 231 (1995).ADSCrossRefGoogle Scholar
  6. 6.
    B. Jager, S. Paluch, O. J. Zoga, W. Wolf, P. Herzig, V. B. Filippov, N. Y. Shitsevalova, and Y. B. Paderno, J. Phys.: Condens. Matter 18, 2525 (2006).ADSGoogle Scholar
  7. 7.
    J. Etourneau and P. Hagenmuller, Philos. Mag. 52, 589 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    P. A. Alekseev, E. V. Nefeodova, U. Staub, J.-M. Mignot, V. N. Lazukov, I. P. Sadikov, L. Soderholm, S. R. Wassermann, Yu. B. Paderno, N. Yu. Shitsevalova, and A. Murani, Phys. Rev. B 63, 064411 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    B. T. Matthias, T. H. Geballe, K. Andres, E. Corenzwit, G. W. Hull, and J. P. Maita, Science 159, 530 (1968).ADSCrossRefGoogle Scholar
  10. 10.
    N. E. Sluchanko, A. N. Azarevich, A. V. Bogach, I. I. Vlasov, V. V. Glushkov, S. V. Demishev, A. A. Maksimov, I. I. Tartakovskii, E. V. Filatov, K. Flachbart, S. Gabani, V. B. Filippov, N. Yu. Shitsevalova, and V. V. Moshchalkov, J. Exp. Theor. Phys. 113, 468 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    H. Werheit, Yu. Paderno, V. Filippov, V. Paderno, A. Pietraszko, M. Armbrüsterd, and U. Schwarz, J. Solid State Chem. 179, 2761 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    H. Werheit, V. Filipov, K. Shirai, H. Dekura, N. Shitsevalova, U. Schwarz, and M. Armbruster, J. Phys.: Condens. Matter 23, 065403 (2011).ADSGoogle Scholar
  13. 13.
    Yu. S. Ponosov, A. A. Makhnev, S. V. Streltsov, V. B. Filipov, and N. Yu. Shitsevalova, J. Alloys Compd. 704, 390 (2017).CrossRefGoogle Scholar
  14. 14.
    J. Teyssier, A. B. Kuzmenko, D. van der Marel, F. Marsiglio, A. B. Liashchenko, N. Shitsevalova, and V. Filippov, Phys. Rev. B 75, 134503 (2007).ADSCrossRefGoogle Scholar
  15. 15.
    J. Teyssier, R. Lortz, A. Petrovic, D. van der Marel, V. Filippov, and N. Shitsevalova, Phys. Rev. B 78, 134504 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    B. Gorshunov, P. Haas, O. Ushakov, M. Dressel, and F. Iga, Phys. Rev. B 73, 045207 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    H. Okamura, S. Kimura, H. Shinozaki, T. Nanba, F. Iga, N. Shimizu, and T. Takabatake, Phys. Rev. B 58, R7496 (1998).ADSCrossRefGoogle Scholar
  18. 18.
    H. Okamura, M. Matsunami, T. Inaoka, T. Nanba, S. Kimura, F. Iga, S. Hiura, J. Klijn, and T. Takabatake, Phys. Rev. B 62, R13265 (2000).ADSCrossRefGoogle Scholar
  19. 19.
    N. Sluchanko, A. Bogach, N. Bolotina, V. Glushkov, S. Demishev, A. Dudka, V. Krasnorussky, O. Khrykina, K. Krasikov, V. Mironov, V. Filipov, and N. Shitsevalova, arXiv:1707.06516v1 [cond-mat.str-el].Google Scholar
  20. 20.
    Yu. Paderno, V. Filippov, and N. Shitsevalova, AIP Conf. Proc. 230, 460 (1991).ADSCrossRefGoogle Scholar
  21. 21.
    Z. Fisk, A. S. Cooper, P. H. Schmidt, and R. N. Castellano, Mater. Res. Bull. 7, 285 (1972).CrossRefGoogle Scholar
  22. 22.
    G. V. Samsonov, L. N. Okhremchuk, I. A. Podchernjaeva, and V. S. Fomenko, Izv. Akad. Nauk SSSR, Neorg. Mater. 10, 270 (1974).Google Scholar
  23. 23.
    A. Taran, D. Voronovich, N. Shitsevalova, A. Levchenko, V. Filipov, and S. Abashin, Solid State Phenom. 172–174, 464 (2011).CrossRefGoogle Scholar
  24. 24.
    H. Okamura, S. Kimura, H. Shinozaki, T. Nanba, F. Iga, N. Shimizu, and T. Takabatake, Phys. Rev. B 58, R7496 (1998).ADSCrossRefGoogle Scholar
  25. 25.
    A. V. Sokolov, Optical Properties of Metals (American Elsevier, New York, 1967).Google Scholar
  26. 26.
    M. Dressel and G. Gruner, Electrodynamics of Solids (Cambridge Univ. Press, Cambridge, 2002).CrossRefGoogle Scholar
  27. 27.
    D. A. Serebrennikov, E. S. Clementyev, and P. A. Alekseev, J. Alloys Compd. 726, 323 (2017).CrossRefGoogle Scholar
  28. 28.
    V. Pluzhnikov, N. Shitsevalova, A. Dukhnenko, A. Czopnik, V. Nizhankovskii, R. Settai, and Y. Ônuki, J. Magn. Magn. Mater. 320, 1597 (2008).ADSCrossRefGoogle Scholar
  29. 29.
    P. Wachter, in Handbook on the Physics and Chemistry of Rare Earths (North-Holland, Amsterdam, 1994).Google Scholar
  30. 30.
    Ju. Varignon, N. C. Bristowe, and P. Ghosez, Phys. Rev. Lett. 116, 057602 (2016).ADSCrossRefGoogle Scholar
  31. 31.
    A. V. Rybina, K. S. Nemkovski, P. A. Alekseev, J.-M.Mignot, E. S. Clementyev, M. Johnson, L. Capogna, A. V. Dukhnenko, A. B. Lyashenko, and V. B. Filippov, Phys. Rev. B 82, 024302 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • B. P. Gorshunov
    • 1
    • 2
  • E. S. Zhukova
    • 1
  • G. A. Komandin
    • 2
  • V. I. Torgashev
    • 3
  • A. V. Muratov
    • 4
  • Yu. A. Aleshchenko
    • 4
  • S. V. Demishev
    • 1
    • 2
  • N. Yu. Shitsevalova
    • 5
  • V. B. Filipov
    • 5
  • N. E. Sluchanko
    • 1
    • 2
  1. 1.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow regionRussia
  2. 2.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Faculty of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  4. 4.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  5. 5.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations