JETP Letters

, Volume 106, Issue 12, pp 793–797 | Cite as

On the Induction of the First-Order Phase Magnetic Transitions by Acoustic Vibrations in MnSi

Condensed Matter
  • 36 Downloads

Abstract

The main result of the paper contains the conclusion that the magnetic phase transition in MnSi always remains first order at any temperature and magnetic field. In these aims, a model of coupling of an order parameter with other degrees of freedom is used. The coupling of magnetic order parameters with long-wave acoustic phonons, in the presence of the nonsingular parts of the bulk and shear moduli, a first-order transition occurs, participle near the transition the heat capacity and the compressibility remain finite, if the heat capacity becomes infinite in the system disregarding the acoustic phonons. The role of the Frenkel heterophase fluctuations is discussed. The impurity effect shows that, for some phases, the heat capacity of the system remains continuous and finite at the transition point. It is supposed that the transition is progressively smoothed by these fluctuations at the application of the magnetic field.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. E. Petrova and S. M. Stishov, Phys. Rev. B 94, 020410(R) (2016).ADSCrossRefGoogle Scholar
  2. 2.
    Y. Ishikawa and M. Arai, J. Phys. Soc. Jpn. 53, 2726 (1984).ADSCrossRefGoogle Scholar
  3. 3.
    S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, Science 323, 915 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    S. A. Brazovskii, Sov. Phys. JETP 41, 85 (1975).ADSGoogle Scholar
  5. 5.
    M. Janoschek, M. Garst, A. Bauer, P. Krautscheid, R. Georgii, P. Böni, and C. Pfleiderer, Phys. Rev. B 87, 134407 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    J. Frenkel, J. Chem. Phys. 7, 538 (1939).ADSCrossRefGoogle Scholar
  7. 7.
    A. F. Andreev, Sov. Phys. JETP 18, 1415 (1964).Google Scholar
  8. 8.
    A. E. Petrova and S. M. Stishov, J. Phys.: Condens. Matter 21, 196001 (2009).ADSGoogle Scholar
  9. 9.
    A. E. Petrova and S. M. Stishov, Phys. Rev. B 91, 214402 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    A. Bauer, M. Garst, and C. Pfleiderer, Phys. Rev. Lett. 110, 177207 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    V. G. Vaks and A. I. Larkin, Sov. Phys. JETP 22, 678 (1966).ADSGoogle Scholar
  12. 12.
    B. A. Strukov and A. P. Levanyuk, Ferroelectric Phenomenain Crystals (Springer, New York, 1998).CrossRefMATHGoogle Scholar
  13. 13.
    V. L. Pokrovskii, Adv. Phys. 28, 595 (1979).ADSCrossRefGoogle Scholar
  14. 14.
    V. L. Pokrovskii, Sov. Phys. Solid State 10, 2852 (1969).Google Scholar
  15. 15.
    A. I. Larkin and S. A. Pikin, Sov. Phys. JETP 29, 891 (1969).ADSGoogle Scholar
  16. 16.
    A. I. Larkin and S. A. Pikin, Sov. Phys. JETP 29, 5 (1969).Google Scholar
  17. 17.
    S. A. Pikin, Structural Transformations in Liquid Crystals (Nauka, Moscow, 1981; Gordon and Breach Science, New York, 1991).Google Scholar
  18. 18.
    S. A. Pikin, Sov. Phys. JETP 31, 753 (1970).ADSGoogle Scholar
  19. 19.
    C. P. Bean and R. D. Rodbell, Phys. Rev. 126, 104 (1962).ADSCrossRefGoogle Scholar
  20. 20.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, 3rd ed. (Nauka, Moscow, 1995; Pergamon, London, 1981).Google Scholar
  21. 21.
    B. I. Widom, J. Phys. Chem. 43, 3892 (1965).CrossRefGoogle Scholar
  22. 22.
    B. I. Widom, J. Phys. Chem. 43, 3896 (1965).Google Scholar
  23. 23.
    C. Domb and D. L. Hunter, Proc. Phys. Soc. 86, 1147 (1965).ADSCrossRefGoogle Scholar
  24. 24.
    T. D. Lee and C. N. Yand, Phys. Rev. 87, 410 (1952).ADSCrossRefGoogle Scholar
  25. 25.
    M. Suzuki and M. E. Fisher, J. Math. Phys. 12, 235 (1971).ADSCrossRefGoogle Scholar
  26. 26.
    V. G. Vaks and A. I. Larkin, Sov. Phys. JETP 22, 678 (1966).ADSGoogle Scholar
  27. 27.
    V. G. Vaks and A. I. Larkin, Sov. Phys. JETP 22, 678 (1965).ADSGoogle Scholar
  28. 28.
    G. Newell and E. Montroll, Rev. Mod. Phys. 25, 353 (1953).ADSCrossRefGoogle Scholar
  29. 29.
    C. Domb and A. Miedema, Prog. Low Temp. Phys. 4, 296 (1964).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Shubnikov Institute of CrystallographyFederal Scientific Research Centre Crystallography and Photonics, Russian Academy of SciencesMoscowRussia

Personalised recommendations