Advertisement

JETP Letters

, Volume 106, Issue 10, pp 686–691 | Cite as

Dynamic compression of exciton-polariton condensates in semiconductor microcavities

  • V. D. Kulakovskii
  • S. S. Gavrilov
  • N. A. Gippius
Miscellaneous
  • 25 Downloads

Abstract

The possibility of the dynamic compression of a polariton system in a planar microcavity after the end of a resonant pump pulse with the formation of the ground state of a condensate on the bottom of the polariton band has been studied. The studies of dynamics of a resonantly excited polariton gas in the mean field approximation have shown that such condensate state can be formed purely dynamically at excitation by coherent convergent Gaussian light pulses with a large aperture if the active region of the cavity is ahead of the waist of the Gaussian beam. The spatial distribution of polaritons in the formed high-density condensate has sharp edges and large jumps of the violet shift and quasimomentum on these edges prevent its monotonic expansion despite the repulsive interaction between polaritons. For this reason, the further evolution of the condensate is primarily due to the discharge of particles from its boundary and is accompanied by a decrease rather than an increase in the size of the high-density region at the initial stage. Thus, the self-sustained regime of the dynamic compression of the polariton condensate can be maintained for a relatively long time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992).ADSCrossRefGoogle Scholar
  2. 2.
    A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Oxford Univ. Press, Oxford, 2007).CrossRefGoogle Scholar
  3. 3.
    B. Deveaud, The Physics of Semiconductor Microcavities (Wiley-VCH, Weinheim, 2007).Google Scholar
  4. 4.
    D. Sanvitto and V. Timofeev, Exciton Polaritons in Microcavities (Springer, Berlin, 2012).Google Scholar
  5. 5.
    A. Amo, J. Lefrère, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdré, E. Giacobino, and A. Bramati, Nat. Phys. 5, 805 (2009).CrossRefGoogle Scholar
  6. 6.
    K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, Le Si Dang, and B. Deveaud-Plédran, Nat. Phys. 4, 706 (2008).CrossRefGoogle Scholar
  7. 7.
    A. V. Larionov, V. D. Kulakovskii, S. Höfling, C. Schneider, L. Worschech, and A. Forchel, Phys. Rev. Lett. 105, 256401 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    K. G. Lagoudakis, B. Pietka, M. Wouters, R. André, and B. Deveaud-Plédran, Phys. Rev. Lett. 105, 120403 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    N. A. Gippius, I. A. Shelykh, D. D. Solnyshkov, S. S. Gavrilov, Y. G. Rubo, A. V. Kavokin, S. G. Tikhodeev, and G. Malpuech, Phys. Rev. Lett. 98, 236401 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    D. N. Krizhanovskii, S. S. Gavrilov, A. P. D. Love, D. Sanvitto, N. A. Gippius, S. G. Tikhodeev, V. D. Kulakovskii, D. M. Whittaker, M. S. Skolnick, and J. S. Roberts, Phys. Rev. B 77, 115336 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    A. A. Demenev, A. A. Shchekin, A. V. Larionov, S. S. Gavrilov, V. D. Kulakovskii, N. A. Gippius, and S. G. Tikhodeev, Phys. Rev. Lett. 101, 136401 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    S. S. Gavrilov, A. S. Brichkin, A. A. Demenev, A.A.Dorodnyy, S. I. Novikov, V. D. Kulakovskii, S. G. Tikhodeev, and N. A. Gippius, Phys. Rev. B 85, 075319 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    S. S. Gavrilov, A. S. Brichkin, Ya. V. Grishina, C. Schneider, S. Höfling, and V. D. Kulakovskii, Phys. Rev. B 92, 205312 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    A. A. Demenev, Ya. V. Grishina, S. I. Novikov, V. D. Kulakovskii, C. Schneider, and S. Höfling, Phys. Rev. B 94, 195302 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    V. D. Kulakovskii, D. N. Krizhanovskii, A. I. Tartakovskii, N. A. Gippius, and S. G. Tikhodeev, Phys. Usp. 46, 967 (2003).ADSCrossRefGoogle Scholar
  16. 16.
    J. Herrmann and B. Wilhelmi, Laser fuer ultrakurzelichimpulse: Grundlagen und Anwendungen (Akademie, Berlin, 1984).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • V. D. Kulakovskii
    • 1
  • S. S. Gavrilov
    • 1
  • N. A. Gippius
    • 1
    • 2
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow regionRussia
  2. 2.Skolkovo Institute of Science and TechnologySkolkovo, Moscow regionRussia

Personalised recommendations