Advertisement

JETP Letters

, Volume 106, Issue 10, pp 662–666 | Cite as

Structural phase transitions and the equation of state of SnTe at high pressures up to 2 mbar

  • A. G. Ivanova
  • I. A. Troyan
  • D. A. Chareev
  • A. G. Gavriliuk
  • K. V. Frolov
  • S. S. Starchikov
  • A. O. Baskakov
  • M. Mezouar
  • I. S. Lyubutin
Condensed Matter

Abstract

Synchrotron X-ray diffraction studies of the structure of SnTe have been performed at room temperature and high pressures under the conditions of quasihydrostatic compression up to 193.5 GPa created in diamond anvil cells. Two structural phase transitions have been detected at P ≈ 3 and 23 GPa. The first phase transition is accompanied by a stepwise decrease in the volume of the unit cell by 4% because of the orthorhombic distortion of the initial SnTe-B1 cubic structure of the NaCl type. It has been found that two intermediate rhombic phases of SnTe with the space groups Cmcm and Pnma coexist in the pressure range of 3–23 GPa. The second phase transition at 23 GPa occurs from the intermediate rhombic modification to the SnTe-B2 cubic phase with the CsCl structure type. This phase transition is accompanied by an abrupt decrease in the volume of the unit cell by 8%. The pressure dependence of the volumes per formula unit at room temperature has been determined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Tanaka, Z. Ren, T. Sato, K. Nakayama, S. Souma, T. Takahashi, K. Segawa, and Y. Ando, Nat. Phys. 8, 800 (2012).CrossRefGoogle Scholar
  2. 2.
    T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu, Nat. Commun. 3, 982 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    L. Fu, Phys. Rev. Lett. 106, 106802 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    R.-J. Slager, A. Mesaros, V. Juričić, and J. Zaanen, Nat. Phys. 9, 98 (2012).CrossRefGoogle Scholar
  5. 5.
    D. Zhou, Q. Li, Y. Ma, Q. Cui, and C. Chen, J. Phys. Chem. C 117, 12266 (2013).CrossRefGoogle Scholar
  6. 6.
    Y. A. Timofeev, B. V. Vinogradov, E. N. Yakovlev, E. V. Kapitanov, and R. O. Kyzyan, Sov. Phys. Solid State 24, 1780 (1982).Google Scholar
  7. 7.
    A. N. Mariano and K. L. Chopra, Appl. Phys. Lett. 10, 282 (1967).ADSCrossRefGoogle Scholar
  8. 8.
    R. A. Hein, Phys. Lett. 23, 435 (1966).ADSCrossRefGoogle Scholar
  9. 9.
    J. A. Kafalas and A. N. Mariano, Science 143, 952 (1964).ADSCrossRefGoogle Scholar
  10. 10.
    D. Zhou, Q. Li, Y. Ma, Q. Cui, and C. Chen, J. Phys. Chem. C 117, 5352 (2013).CrossRefGoogle Scholar
  11. 11.
    C. Prescher and V. B. Prakapenka, High Press. Res. 35, 223 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    V. Petřiček, M. Dušek, and L. Palatinus, Z. Kristallogr.—Cryst. Mater. 229, 345 (2014).Google Scholar
  13. 13.
    P. I. Dorogokupets and A. Dewaele, High Press. Res. 27, 431 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    Y. Fei, A. Ricolleau, M. Frank, K. Mibe, G. Shen, and V. Prakapenka, Proc. Natl. Acad. Sci. U.S.A. 104, 9182 (2007).ADSCrossRefGoogle Scholar
  15. 15.
    A. le Bail, Powder Diffract. 20, 316 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • A. G. Ivanova
    • 1
    • 2
  • I. A. Troyan
    • 1
    • 2
    • 3
  • D. A. Chareev
    • 4
  • A. G. Gavriliuk
    • 1
    • 2
    • 3
  • K. V. Frolov
    • 1
  • S. S. Starchikov
    • 1
    • 2
  • A. O. Baskakov
    • 1
  • M. Mezouar
    • 5
  • I. S. Lyubutin
    • 1
  1. 1.Shubnikov Institute of Crystallography, Federal Research Center Crystallography and PhotonicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute for Nuclear ResearchRussian Academy of SciencesMoscowRussia
  3. 3.Immanuel Kant Baltic Federal UniversityKaliningradRussia
  4. 4.Institute of Experimental MineralogyRussian Academy of SciencesChernogolovka, Moscow regionRussia
  5. 5.European Synchrotron Radiation FacilityGrenobleFrance

Personalised recommendations