Advertisement

JETP Letters

, Volume 106, Issue 10, pp 653–658 | Cite as

Formation of ball streamers at a subnanosecond breakdown of gases at a high pressure in a nonuniform electric field

  • D. V. Beloplotov
  • V. F. Tarasenko
  • D. A. Sorokin
  • M. I. Lomaev
Plasma, Hydro- and Gas Dynamics

Abstract

The formation of a diffuse discharge plasma at a subnanosecond breakdown of a “cone–plane” gap filled with air, nitrogen, methane, hydrogen, argon, neon, and helium at various pressures has been studied. Nanosecond negative and positive voltage pulses have been applied to the conical electrode. The experimental data on the dynamics of plasma glow at the stage of formation and propagation of a streamer have been obtained with intensified charge-coupled device and streak cameras. It has been found that the formation of ball streamers is observed in all gases and at both polarities. A supershort avalanche electron beam has been detected behind the flat foil electrode in a wide range of pressures in the case of a negatively charged conical electrode. A mechanism of the formation of streamers at breakdown of various gases at high overvoltages has been discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Meek, Phys. Rev. 57, 722 (1940).ADSCrossRefGoogle Scholar
  2. 2.
    H. Raether, Electron Avalanches and Breakdown in Gases (Butterworths, London, 1964).Google Scholar
  3. 3.
    Yu. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991; Intellekt, Dolgoprudnyi, 2009).Google Scholar
  4. 4.
    Yu. D. Korolev and G. A. Mesyats, Physics of Pulsed Breakdown in Gases (Nauka, Moscow, 1991; URO Press, Yekaterinburg, 1998).Google Scholar
  5. 5.
    S. M. Starikovskaia, N. B. Anikin, S. V. Pancheshnyi, D. V. Zatsepin, and A. Y. Starikovskii, Plasma Sources Sci. Technol. 10, 344 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    A. Yu. Starikovskiy, IEEE Trans. Plasma Sci. 39, 2602 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    L. P. Babich, E. I. Bochkov, and I. M. Kutsyk, JETP Lett. 99, 386 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    S. Sadigh, N. Liu, J. R. Dwyer, and H. K. Rassoul, J. Geophys. Res.: Atmospheres 120, 3660 (2015).ADSGoogle Scholar
  9. 9.
    N. Yu. Babaeva and G. V. Naidis, Phys. Plasmas 23, 083527 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    C. Köhn, O. Chanrion, and T. Neubert, Plasma Sources Sci. Technol. 26, 015006 (2016).CrossRefGoogle Scholar
  11. 11.
    D. Bošnjaković, Z. L. Petrović, and S. Dujko, J. Phys. D: Appl. Phys. 49, 405201 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    N. Yu. Babaeva, D. V. Tereshonok, and G. V. Naidis, Plasma Sources Sci. Technol. 25, 044008 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    C. Köhn, O. Chanrion, and T. Neubert, Geophys. Res. Lett. 44, 2604 (2017).ADSGoogle Scholar
  14. 14.
    Runaway Electrons Preionized Diffuse Discharges, Ed. by V. F. Tarasenko (Nova Science, New York, 2014).Google Scholar
  15. 15.
    I. D. Kostyrya and V. F. Tarasenko, Russ. Phys. J. 47, 1314 (2004).CrossRefGoogle Scholar
  16. 16.
    P. Tardiveau, N. Moreau, S. Bentaleb, C. Postel, and S. Pasquiers, J. Phys. D: Appl. Phys. 42, 175202 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    P. Tardiveau, L. Magne, E. Marode, K. Ouaras, P. Jeanney, and B. Bournonville, Plasma Sources Sci. Technol. 25, 054005 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    M. I. Lomaev, D. V. Beloplotov, V. F. Tarasenko, and D. A. Sorokin, IEEE Trans. Dielectr. Electr. Insul. 22, 1833 (2015).CrossRefGoogle Scholar
  19. 19.
    V. F. Tarasenko, D. V. Beloplotov, and M. I. Lomaev, Plasma Phys. Rep. 41, 832 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    E. E. Kunhardt and W. W. Byszewski, Phys. Rev. A 21, 2069 (1980).ADSCrossRefGoogle Scholar
  21. 21.
    W. W. Byszewski and G. Reinhold, Phys. Rev. A 26, 2826 (1982).ADSCrossRefGoogle Scholar
  22. 22.
    V. F. Tarasenko, E. K. Baksht, A. G. Burachenko, I. D. Kostyrya, M. I. Lomaev, and D. V. Rybka, Plasma Dev. Operat. 16, 267 (2008).CrossRefGoogle Scholar
  23. 23.
    V. F. Tarasenko, S. I. Yakovlenko, V. M. Orlovski, A. N. Tkachev, and C. A. Shunalov, JETP Lett. 77, 611 (2003).ADSCrossRefGoogle Scholar
  24. 24.
    V. F. Tarasenko, E. Kh. Baksht, D. V. Beloplotov, A. G. Burachenko, I. D. Kostyrya, M. I. Lomaev, D. V. Rybka, and D. A. Sorokin, JETP Lett. 102, 350 (2015).ADSCrossRefGoogle Scholar
  25. 25.
    A. V. Kozyrev, V. F. Tarasenko, E. Kh. Baksht, and Yu. V. Shut’ko, Tech. Phys. Lett. 37, 1054 (2011).ADSCrossRefGoogle Scholar
  26. 26.
    V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, and M. I. Lomaev, Prikl. Fiz., No. 4, 49 (2016).Google Scholar
  27. 27.
    V. O. Ponomarenko and G. N. Tolmachev, Usp. Prikl. Fiz., No. 1, 49 (2013).Google Scholar
  28. 28.
    Yu. L. Stankevich and V. G. Kalinin, Sov. Phys. Dokl. 12, 1042 (1967).ADSGoogle Scholar
  29. 29.
    T. Shao, Ch. Zhang, Zh. Niu, P. Jan, V. F. Tarasenko, E. Kh. Baksht, I. D. Kostyrya, and Yu. V. Shut’ko, J. Appl. Phys. 109, 083306 (2011).ADSCrossRefGoogle Scholar
  30. 30.
    C. V. Nguyen, A. P. J. Van Deursen, E. J. M. van Heesch, G. J. J. Winands, and A. J. M. Pemen, J. Phys. D: Appl. Phys. 43, 025202 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • D. V. Beloplotov
    • 1
  • V. F. Tarasenko
    • 1
  • D. A. Sorokin
    • 1
  • M. I. Lomaev
    • 1
  1. 1.Institute of High Current Electronics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations