Advertisement

JETP Letters

, Volume 106, Issue 10, pp 630–636 | Cite as

On 6j-symbols for symmetric representations of Uq(suN)

  • A. Mironov
  • A. Morozov
  • A. Sleptsov
Fields, Particles, and Nuclei

Abstract

Explicit expressions are found for the 6j symbols in symmetric representations of quantum suN through appropriate hypergeometric Askey–Wilson (q-Racah) polynomials. This generalizes the well-known classical formulas for Uq(su2) and provides a link to conformal theories and matrix models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Racah, Phys. Rev. 62, 438 (1942).ADSCrossRefGoogle Scholar
  2. 2.
    E. P. Wigner, in Quantum Theory of Angular Momentum, Ed. by L. C. Biedenharn and H. van Dam (Academic, New York, 1965), p. 87.Google Scholar
  3. 3.
    E. P. Wigner, Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra (Academic, New York, 1959).zbMATHGoogle Scholar
  4. 4.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory, 3rd ed. (Nauka, Moscow, 1989; Pergamon, Oxford, 1977).Google Scholar
  5. 5.
    J. Scott Carter, D. E. Flath, and M. Saito, The Classical and Quantum 6j-symbols (Princeton Univ. Press, Princeton, 1995).zbMATHGoogle Scholar
  6. 6.
    S. Nawata, P. Ramadevi, and Zodinmawia, Lett. Math. Phys. 103, 1389 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    J. Gu and H. Jockers, arXiv:1407.5643.Google Scholar
  8. 8.
    A. Mironov, A. Morozov, and A. Sleptsov, J. High Energy Phys. 07, 069 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    A. Mironov, A. Morozov, An. Morozov, and A. Sleptsov, JETP Lett. 104, 56 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    A. Mironov, A. Morozov, An. Morozov, and A. Sleptsov, Phys. Lett. B 760, 45 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    A. Morozov, J. High Energy Phys. 1609, 135 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    A. Morozov, Phys. Lett. B 766, 291 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    http://www.knotebook.org.Google Scholar
  14. 14.
    P. Ramadevi, T. R. Govindarajan, and R. K. Kaul, Mod. Phys. Lett. A 9, 3205 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    S. Nawata, P. Ramadevi, and Zodinmawia, J. Knot Theory Ramificat. 22, 13 (2013).Google Scholar
  16. 16.
    D. Galakhov, D. Melnikov, A. Mironov, A. Morozov, and A. Sleptsov, Phys. Lett. B 743, 71 (2015).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    D. Galakhov, D. Melnikov, A. Mironov, and A. Morozov, Nucl. Phys. B 899, 194 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    A. Mironov, A. Morozov, An. Morozov, P. Ramadevi, and V. K. Singh, J. High Energy Phys. 1507, 109 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    A. Mironov and A. Morozov, Phys. Lett. B 755, 47 (2016).ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Mironov, A. Morozov, An. Morozov, P. Ramadevi, V. K. Singh, and A. Sleptsov, J. Phys. A 50, 085201 (2017).ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    H. Itoyama, A. Mironov, A. Morozov, and An. Morozov, J. High Energy Phys. 7, 131 (2012).ADSCrossRefGoogle Scholar
  22. 22.
    N. M. Dunfield, S. Gukov, and J. Rasmussen, Exp. Math. 15, 129 (2006).CrossRefGoogle Scholar
  23. 23.
    S. Gukov and M. Stosic, arXiv:1112.0030.Google Scholar
  24. 24.
    E. Gorsky, S. Gukov, and M. Stosic, arXiv:1304.3481.Google Scholar
  25. 25.
    A. Mironov, A. Morozov, and An. Morozov, AIP Conf. Proc. 1562, 123 (2013).ADSCrossRefGoogle Scholar
  26. 26.
    S. Arthamonov, A. Mironov, A. Morozov, and An. Morozov, J. High Energy Phys. 04, 156 (2014).ADSCrossRefGoogle Scholar
  27. 27.
    S. Gukov, S. Nawata, I. Saberi, M. Stosic, and P. Sulkowski, arXiv:1512.07883.Google Scholar
  28. 28.
    A. Morozov, Nucl. Phys. B 911, 582 (2016).ADSCrossRefGoogle Scholar
  29. 29.
    Ya. Kononov and A. Morozov, arXiv:1609.00143.Google Scholar
  30. 30.
    Ya. Kononov and A. Morozov, Mod. Phys. Lett. A 31, 1650223 (2016).ADSCrossRefGoogle Scholar
  31. 31.
    P. Kucharski, M. Reineke, M. Stosic, and P. Sulkowski, arXiv:1707.02991.Google Scholar
  32. 32.
    P. Kucharski, M. Reineke, M. Stosic, and P. Sulkowski, arXiv:1707.04017.Google Scholar
  33. 33.
    J. Wilson, PhD Thesis (Univ. Wisconsin, Madison, 1978).Google Scholar
  34. 34.
    R. Askey and J. Wilson, SIAM J. Math. Anal. 10, 1008 (1979).MathSciNetCrossRefGoogle Scholar
  35. 35.
    I. I. Kachurik and A. U. Klimyk, J. Phys. A: Math. Gen. 23, 2717 (1990).ADSCrossRefGoogle Scholar
  36. 36.
    N. Ja. Vilenkin and A. U. Klimyk, Representation of Lie Groups and Special Functions, Vol. 1: Simplest Lie Groups, Special Functions and Integral Transforms (Springer Science, Dordrecht, 1991).CrossRefzbMATHGoogle Scholar
  37. 37.
    A. Kirillov and N. Reshetikhin, in New Developments in the Theory of Knots (World Scientific, Singapore, 1989).Google Scholar
  38. 38.
    L. C. Biedenharn, J. Math. Phys. 31, 287 (1953).CrossRefGoogle Scholar
  39. 39.
    J. P. Elliott, Proc. R. Soc. A 218, 370 (1953).Google Scholar
  40. 40.
    I. G. Macdonald, Orthogonal Polynomials Associated with Root Systems (1988, unpublished); in Proceedings of the 45th Meeting of the Lotharingian Seminar for Combinatorics, Bellagio, Lago di Como, Italy, 2000, Article B45a; math/0011046.zbMATHGoogle Scholar
  41. 41.
    T. H. Koornwinder, in Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications, Ed. by D. St. P. Richards, Contemp. Math. 138, 189 (1992).CrossRefGoogle Scholar
  42. 42.
    G. Gasper and M. Rahman, Basic Hypergeometric Series (Cambridge Univ. Press, Cambridge, 1990).zbMATHGoogle Scholar
  43. 43.
    R. Koekoek, P. A. Lesky, and R. F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their q-Analogues (Springer Science, New York, 2010).CrossRefzbMATHGoogle Scholar
  44. 44.
    P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik, Tensor Categories (2009). http://www-math.mit.edu/etingof/ tenscat1.pdf.zbMATHGoogle Scholar
  45. 45.
    M. V. Tratnik, J. Math. Phys. 32, 2065 (1991).ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    G. Gasper and M. Rahman, Ramanujan J. 13, 389 (2007).MathSciNetCrossRefGoogle Scholar
  47. 47.
    P. Iliev, Trans. Am. Math. Soc. 363, 1577 (2011).CrossRefGoogle Scholar
  48. 48.
    A. Morozov and L. Vinet, Mod. Phys. Lett. A 8, 2891 (1993).ADSCrossRefGoogle Scholar
  49. 49.
    A. Mironov, A. Morozov, and L. Vinet, Theor. Math. Phys. 100, 890 (1995).CrossRefGoogle Scholar
  50. 50.
    V. Dotsenko and V. Fateev, Nucl. Phys. B 240, 312 (1984).ADSCrossRefGoogle Scholar
  51. 51.
    R. Dijkgraaf and C. Vafa, arXiv:0909.2453.Google Scholar
  52. 52.
    H. Itoyama, K. Maruyoshi, and T. Oota, Prog. Theor. Phys. 123, 957 (2010).ADSCrossRefGoogle Scholar
  53. 53.
    T. Eguchi and K. Maruyoshi, arXiv:1006.0828.Google Scholar
  54. 54.
    R. Schiappa and N. Wyllard, arXiv:0911.5337.Google Scholar
  55. 55.
    A. Mironov, A. Morozov, and Sh. Shakirov, J. High Energy Phys. 02, 030 (2010); Int. J. Mod. Phys. A 25, 3173 (2010).ADSCrossRefGoogle Scholar
  56. 56.
    H. Itoyama and T. Oota, Nucl. Phys. B 838, 298 (2010); arXiv:1003.2929.ADSCrossRefGoogle Scholar
  57. 57.
    A. Mironov, A. Morozov, and An. Morozov, Nucl. Phys. B 843, 534 (2011); arXiv:1003.5752.ADSCrossRefGoogle Scholar
  58. 58.
    H. Awata and H. Kanno, J. High Energy Phys. 0907, 076 (2009); arXiv:0905.0184.ADSCrossRefGoogle Scholar
  59. 59.
    H. Awata and Y. Yamada, J. High Energy Phys. 1001, 125 (2010); arXiv:0910.4431; Prog. Theor. Phys.124, 227 (2010).ADSCrossRefGoogle Scholar
  60. 60.
    S. Yanagida, J. Math. Phys. 51, 123506 (2010); arXiv:1005.0216.ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    A. Mironov, A. Morozov, S. Shakirov, and A. Smirnov, Nucl. Phys. B 855, 128 (2012); arXiv:1105.0948.ADSCrossRefGoogle Scholar
  62. 62.
    F. Nieri, S. Pasquetti, F. Passerini, and A. Torrielli, J. High Energy Phys. 12, 040 (2014); arXiv:1312.1294.ADSCrossRefGoogle Scholar
  63. 63.
    M.-C. Tan, J. High Energy Phys. 12, 031 (2013); arXiv:1309.4775; arXiv:1607.08330.ADSCrossRefGoogle Scholar
  64. 64.
    H. Itoyama, T. Oota, and R. Yoshioka, J. Phys. A: Math. Theor. 49, 345201 (2016); arXiv:1602.01209.CrossRefGoogle Scholar
  65. 65.
    A. Nedelin and M. Zabzine, arXiv:1511.03471.Google Scholar
  66. 66.
    Y. Ohkubo, H. Awata, and H. Fujino, arXiv:1512.08016.Google Scholar
  67. 67.
    A. Mironov and A. Morozov, Phys. Lett. B 773, 34 (2017); arXiv:1707.02443; arXiv:1708.07479.ADSMathSciNetCrossRefGoogle Scholar
  68. 68.
    A. Mironov, A. Morozov, and Y. Zenkevich, Phys. Lett. B 762, 196 (2016); arXiv:1603.05467.ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    H. Awata, H. Kanno, T. Matsumoto, A. Mironov, A. Morozov, An. Morozov, Y. Ohkubo, and Y. Zenkevich, J. High Energy Phys. 07, 103 (2016); arXiv:1604.08366.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Alikhanov Institute of Theoretical and Experimental PhysicsMoscowRussia
  3. 3.Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia
  4. 4.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  5. 5.Laboratory of Quantum TopologyChelyabinsk State UniversityChelyabinskRussia

Personalised recommendations