Quantum limit in a quasi-one-dimensional conductor in a high tilted magnetic field



Recently, we have suggested Fermi-liquid–non-Fermi-liquid angular crossovers which may exist in quasi-one-dimensional (Q1D) conductors in high tilted magnetic fields [see A.G. Lebed, Phys. Rev. Lett. 115, 157001 (2015).] All calculations in the Letter were done by using the quasi-classical Peierls substitution method, whose applicability in high magnetic fields was questionable. Here, we solve a fully quantum mechanical problem and show that the main qualitative conclusions of the above mentioned Letter are correct. In particular, we show that in high magnetic fields, applied along one of the two main crystallographic axis, we have 2D electron spectrum, whereas, for directions of high magnetic fields far from the axes, we have 1D electron spectrum. The later is known to promote non-Fermi-liquid properties. As a result, we expect the existence of Fermi-liquid – non-Fermi-liquid angular crossovers or phase transitions. Electronic parameters of Q1D conductor (Per)2Pt(mnt)2 show that such transitions can appear in feasible high magnetic fields of the order of H ≃ 20–25 T.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The Physics of Organic Superconductors and Conductors, ed. by A. G. Lebed, Springer, Berlin (2008).Google Scholar
  2. 2.
    P. M. Chaikin, M.-Y. Choi, J. F. Kwak, J. S. Brooks, K.P. Martin, M. J. Naughton, E. M. Engler, and R. L. Green, Phys. Rev. Lett. 51, 2333 (1983).ADSCrossRefGoogle Scholar
  3. 3.
    M. Ribault, D. Jerome, J. Tuchendler, C. Weyl, and K. Bechgaard, J. Phys. (Paris) Lett. 44, L953 (1983).CrossRefGoogle Scholar
  4. 4.
    L.P. Gor’kov and A. G. Lebed, J. Phys. (Paris) Lett. 45, L433 (1984).CrossRefGoogle Scholar
  5. 5.
    M. Heritier, G. Montambaux, and P. Lederer, J. Phys. (Paris) Lett. 45, L943 (1984).CrossRefGoogle Scholar
  6. 6.
    P. M. Chaikin, Phys. Rev. B 31, 4770 (1985).ADSCrossRefGoogle Scholar
  7. 7.
    A. G. Lebed, Sov. Phys. JETP 62, 595 (1985) [ZhETF 89, 1034 (1985)].Google Scholar
  8. 8.
    A. Virosztek, L. Chen, and K. Maki, Phys. Rev. B 34, 3371 (1986).ADSCrossRefGoogle Scholar
  9. 9.
    D. Poilblanc, M. Heritier, G. Montambaux, and P. Lederer, J. Phys. C Solid State Phys. 19, L321 (1986).ADSCrossRefGoogle Scholar
  10. 10.
    V. M. Yakovenko, Phys. Rev. B 43, 11353 (1991).ADSCrossRefGoogle Scholar
  11. 11.
    A.G. Lebed and Si Wu, Phys. Rev. B 82, 172504 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    A. G. Lebed and Per Bak, Phys. Rev. Lett. 63, 1315 (1989).ADSCrossRefGoogle Scholar
  13. 13.
    V. M. Yakovenko, Phys. Rev. Lett. 68, 3607 (1992); Erratum 70, 519 (1993).ADSCrossRefGoogle Scholar
  14. 14.
    A. G. Lebed, J. Phys. I France 6, 1819 (1996).CrossRefGoogle Scholar
  15. 15.
    S.P. Strong, D.G. Clark, and P. W. Anderson, Phys. Rev. Lett. 73, 1007 (1994).ADSCrossRefGoogle Scholar
  16. 16.
    W. Wu, I. J. Lee, and P.M. Chaikin, Phys. Rev. Lett. 91, 056601 (2003).ADSCrossRefGoogle Scholar
  17. 17.
    W. Wu, N.P. Ong, and P.M. Chaikin, Phys. Rev. B 72, 235116 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    E. S. Choi, J. S. Brooks, H. Kang, Y. J. Jo, and W. Kang, Phys. Rev. Lett. 95, 187001 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    M.-S. Nam, A. Ardavan, W. Wu, and P.M. Chaikin, Phys. Rev. B 74, 073105 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    K. Kobayashi, H. Satsukawa, J. Yamada, T. Terashita, and S. Uji, Phys. Rev. Lett. 112, 116805 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    A. G. Lebed, JETP Lett. 44, 114 (1986) [Pis’ma ZhETF 44, 89 (1986)].ADSGoogle Scholar
  22. 22.
    N. Dupuis, G. Montambaux, and C. A. R. Sa de Melo, Phys. Rev. Lett. 49, 8993 (1994).ADSGoogle Scholar
  23. 23.
    A. G. Lebed and K. Yamaji, Phys. Rev. Lett. 80, 2697 (1998).ADSCrossRefGoogle Scholar
  24. 24.
    O. Sepper and A.G. Lebed, Phys. Rev. B 90, 094509 (2014).ADSCrossRefGoogle Scholar
  25. 25.
    A.G. Lebed and O. Sepper, Phys. Rev. B 90, 024510 (2014).ADSCrossRefGoogle Scholar
  26. 26.
    A. G. Lebed, Phys. Rev. Lett. 115, 157001 (2015).ADSCrossRefGoogle Scholar
  27. 27.
    A. G. Lebed, Phys. Rev. B 94, 035162 (2016).ADSCrossRefGoogle Scholar
  28. 28.
    I. S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, 5th ed., Academic Press, N.Y. (1994).MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of ArizonaTucsonUSA
  2. 2.L.D. Landau Institute for Theoretical Physics RASMoscowRussia

Personalised recommendations