Advertisement

JETP Letters

, Volume 106, Issue 6, pp 371–377 | Cite as

Slow quantum oscillations without fine-grained Fermi surface reconstruction in cuprate superconductors

  • P. D. Grigoriev
  • T. Ziman
Condensed Matter

Abstract

The Fourier transform of the observed magnetic quantum oscillations (MQOs) in YBa2Cu3O6+δ high-temperature superconductors has a prominent low-frequency peak with two smaller neighboring peaks. The separation and positions of these three peaks are almost independent of doping. This pattern has been explained previously by rather special, exquisitely detailed, Fermi-surface reconstruction. We propose that these MQOs have a different origin, and their frequencies are related to the bilayer and inter-bilayer electron hopping rather than directly to the areas of tiny Fermi-surface pockets. Such so-called “slow oscillations” explain more naturally many features of the observed oscillations and allow us to estimate the inter-layer transfer integrals and in-plane Fermi momentum.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Abrikosov, Fundamentals of the Theory of Metals (North-Holland, Amsterdam, 1988).Google Scholar
  2. 2.
    D. Shoenberg, Magnetic Oscillations in Metals (Cambridge Univ. Press, Cambridge, 1984).CrossRefGoogle Scholar
  3. 3.
    J. M. Ziman, Principles of the Theory of Solids (Cambridge Univ. Press, Cambridge, 1972).CrossRefMATHGoogle Scholar
  4. 4.
    N. Doiron-Leyraud, C. Proust, D. le Boeuf, J. Levallois, J.-B. Bonnemaison, R. Liang, D. A. Bonn, W. N. Hardy, and L. Taillefer, Nature 447, 565 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    S. E. Sebastian and C. Proust, Ann. Rev. Condens. Matter Phys. 6, 411 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    T. Helm, M. V. Kartsovnik, C. Proust, B. Vignolle, C. Putzke, E. Kampert, I. Sheikin, E.-S. Choi, J. S. Brooks, N. Bittner, W. Biberacher, A. Erb, J. Wosnitza, and R. Gross, Phys. Rev. B 92, 094501 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    T. Terashima, N. Kurita, M. Tomita, K. Kihou, C.-H. Lee, Y. Tomioka, T. Ito, A. Iyo, H. Eisaki, T. Liang, M. Nakajima, S. Ishida, S.-I. Uchida, H. Harima, and S. Uji, Phys. Rev. Lett. 107, 176402 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    D. Graf, R. Stillwell, T. P. Murphy, J.-H. Park, E. C. Palm, P. Schlottmann, R. D. McDonald, J. G. Analytis, I. R. Fisher, and S. W. Tozer, Phys. Rev. B 85, 134503 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    A. I. Coldea, D. Braithwaite, and A. Carrington, C. R. Phys. 14, 94 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    T. Terashima, N. Kikugawa, A. Kiswandhi, E.-S. Choi, J. S. Brooks, S. Kasahara, T. Watashige, H. Ikeda, T. Shibauchi, Y. Matsuda, T. Wolf, A. E. Böhmer, F. Hardy, C. Meingast, H. v. Löhneysen, M.-T. Suzuki, R. Arita, and S. Uji, Phys. Rev. B 90, 144517 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    A. Audouard, F. Duc, L. Drigo, P. Toulemonde, S. Karlsson, P. Strobel, and A. Sulpice, Europhys. Lett. 109, 27003 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    M. D. Watson, T. K. Kim, A. A. Haghighirad, N. R. Davies, A. McCollam, A. Narayanan, S. F. Blake, Y. L. Chen, S. Ghannadzadeh, A. J. Schofield, M. Hoesch, C. Meingast, T. Wolf, and A. I. Coldea, Phys. Rev. B 91, 155106 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    M. D. Watson, T. Yamashita, S. Kasahara, W. Knafo, M. Nardone, J. Beard, F. Hardy, A. McCollam, A. Narayanan, S. F. Blake, T. Wolf, A. A. Haghighirad, C. Meingast, A. J. Schofield, H. v. Löhneysen, Y. Matsuda, A. I. Coldea, and T. Shibauchi, Phys. Rev. Lett. 115, 027006 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    S. E. Sebastian, N. Harrison, E. Palm, T. P. Murphy, C. H. Mielke, R. Liang, D. A. Bonn, W. N. Hardy, and G. G. Lonzarich, Nature 454, 200 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    A. Audouard, C. Jaudet, D. Vignolles, R. Liang, D. A. Bonn, W. N. Hardy, L. Taillefer, and C. Proust, Phys. Rev. Lett. 103, 157003 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    J. Singleton, C. de la Cruz, R. D. McDonald, S. Li, M. Altarawneh, P. Goddard, I. Franke, D. Rickel, C. H. Mielke, X. Yao, and P. Dai, Phys. Rev. Lett. 104, 086403 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    S. E. Sebastian, N. Harrison, M. M. Altarawneh, C. H. Mielke, R. Liang, D. A. Bonn, W. N. Hardy, and G. G. Lonzarich, Proc. Natl. Acad. Sci. USA 107, 6175 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    S. E. Sebastian, N. Harrison, P. A. Goddard, M. M. Altarawneh, C. H. Mielke, R. Liang, D. A. Bonn, W. N. Hardy, O. K. Andersen, and G. G. Lonzarich, Phys. Rev. B 81, 214524 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    S. E. Sebastian, N. Harrison, R. Liang, D. A. Bonn, W. N. Hardy, C. H. Mielke, and G. G. Lonzarich, Phys. Rev. Lett. 108, 196403 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    S. E. Sebastian, N. Harrison, F. F. Balakirev, M. M. Altarawneh, P. A. Goddard, R. Liang, D. A. Bonn, W. N. Hardy, and G. G. Lonzarich, Nature 511, 61 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    N. Doiron-Leyraud, S. Badoux, S. Rene de Cotret, S. Lepault, D. LeBoeuf, F. Laliberte, E. Hassinger, B. J. Ramshaw, D. A. Bonn, W. N. Hardy, R. Liang, J.-H. Park, D. Vignolles, B. Vignolle, L. Taillefer, and C. Proust, Nat. Commun. 6, 6034 (2015).CrossRefGoogle Scholar
  22. 22.
    S. E. Sebastian, N. Harrison, and G. G. Lonzarich, Rep. Prog. Phys. 75, 102501 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    B. Vignolle, D. Vignolles, M.-H. Julien, and C. Proust, C.R. Phys. 14, 39 (2013).ADSCrossRefGoogle Scholar
  24. 24.
    S. E. Sebastian, N. Harrison, and G. G. Lonzarich, Phil. Trans. R. Soc. A 369, 1687 (2011).ADSCrossRefGoogle Scholar
  25. 25.
    I. S. Elfimov, G. A. Sawatzky, and A. Damascelli, Phys. Rev. B 77, 060504(R) (2008).ADSCrossRefGoogle Scholar
  26. 26.
    D. Garcia-Aldea and S. Chakravarty, New J. Phys. 12, 105005 (2010).ADSCrossRefGoogle Scholar
  27. 27.
    N. Harrison and S. E. Sebastian, New J. Phys. 14, 095023 (2012).ADSCrossRefGoogle Scholar
  28. 28.
    N. Harrison, B. J. Ramshaw, and A. Shekhter, Sci. Rep. 5, 10914 (2015).ADSCrossRefGoogle Scholar
  29. 29.
    A. K. R. Briffa, E. Blackburn, S. M. Hayden, E. A. Yelland, M. W. Long, and E. M. Forgan, Phys. Rev. B 93, 094502 (2016).ADSCrossRefGoogle Scholar
  30. 30.
    G. Ghiringhelli, M. le Tacon, M. Minola, et al., Science 337, 821 (2012).ADSCrossRefGoogle Scholar
  31. 31.
    J. Chang, E. Blackburn, A. Holmes, et al., Nat. Phys. 8, 871 (2012).CrossRefGoogle Scholar
  32. 32.
    A. J. Achkar, R. Sutarto, X. Mao, F. He, A. Frano, S. Blanco-Canosa, M. le Tacon, G. Ghiringhelli, L. Braicovich, M. Minola, M. Moretti Sala, C. Mazzoli, R. Liang, D. A. Bonn, W. N. Hardy, B. Keimer, G. A. Sawatzky, and D. G. Hawthorn, Phys. Rev. Lett. 109, 167001 (2012).ADSCrossRefGoogle Scholar
  33. 33.
    S. Gerber, H. Jang, H. Nojiri, S. Matsuzawa, H. Yasumura, D. A. Bonn, R. Liang, W. N. Hardy, Z. Islam, A. Mehta, S. Song, M. Sikorski, D. Stefanescu, Y. Feng, S. A. Kivelson, T. P. Devereaux, Z.-X. Shen, C.-C. Kao, W.-S. Lee, D. Zhu, and J.-S. Lee, Science 350, 949 (2015).CrossRefGoogle Scholar
  34. 34.
    H. Jang, W.-S. Lee, H. Nojiri, S. Matsuzawa, H. Yasumura, L. Nie, A. V. Maharaj, S. Gerber, Y. Liu, A.Mehta, D. A. Bonn, R. Liang, W. N. Hardy, C. A. Burns, Z. Islam, et al., arXiv:1607.05359.Google Scholar
  35. 35.
    T. Wu, H. Mayaffre, S. Krämer, M. Horvatic, C. Berthier, W. Hardy, R. Liang, D. Bonn, and M.-H. Julien, Nature (London) 477, 191 (2011).ADSCrossRefGoogle Scholar
  36. 36.
    T. Wu, H. Mayaffre, S. Krämer, M. Horvatic, C. Berthier, W. Hardy, R. Liang, D. Bonn, and M.-H. Julien, Nat. Commun. 6, 6438 (2015).CrossRefGoogle Scholar
  37. 37.
    D. LeBoeuf, S. Krämer, W. N. Hardy, R. Liang, D. A. Bonn, and C. Proust, Nat. Phys. 9, 79 (2013).CrossRefGoogle Scholar
  38. 38.
    E. A. Yelland, J. Singleton, C. H. Mielke, N. Harrison, F. F. Balakirev, B. Dabrowski, and J. R. Cooper, Phys. Rev. Lett. 100, 047003 (2008).ADSCrossRefGoogle Scholar
  39. 39.
    A. F. Bangura, J. D. Fletcher, A. Carrington, J. Levallois, M. Nardone, B. Vignolle, P. J. Heard, N. Doiron-Leyraud, D. LeBoeuf, L. Taillefer, S. Adachi, C. Proust, and N. E. Hussey, Phys. Rev. Lett. 100, 047004 (2008).ADSCrossRefGoogle Scholar
  40. 40.
    B. S. Tan, N. Harrison, Z. Zhu, F. Balakirev, B. J. Ramshaw, A. Srivastava, S. A. Sabok-Sayr, B. Dabrowski, G. G. Lonzarich, and S. E. Sebastian, Proc. Natl. Acad. Sci. USA 112, 9568 (2015).ADSCrossRefGoogle Scholar
  41. 41.
    T. Helm, M. V. Kartsovnik, M. Bartkowiak, N. Bittner, M. Lambacher, A. Erb, J. Wosnitza, and R. Gross, Phys. Rev. Lett. 103, 157002 (2009).ADSCrossRefGoogle Scholar
  42. 42.
    T. Helm, M. V. Kartsovnik, I. Sheikin, M. Bartkowiak, F. Wolff-Fabris, N. Bittner, W. Biberacher, M. Lambacher, A. Erb, J. Wosnitza, and R. Gross, Phys. Rev. Lett. 105, 247002 (2010).ADSCrossRefGoogle Scholar
  43. 43.
    B. J. Ramshaw, S. E. Sebastian, R. D. McDonald, J. Day, B. S. Tan, Z. Zhu, J. B. Betts, R. Liang, D. A. Bonn, W. N. Hardy, and N. Harrison, Science 348, 317 (2015).ADSCrossRefGoogle Scholar
  44. 44.
    T. Pereg-Barnea, H. Weber, G. Refael, and M. Franz, Nat. Phys. 6, 44 (2010).CrossRefGoogle Scholar
  45. 45.
    D. Fournier, G. Levy, Y. Pennec, J. L. McChesney, A. Bostwick, E. Rotenberg, R. Liang, W. N. Hardy, D. A. Bonn, I. S. Elfimov, and A. Damascelli, Nat. Phys. 6, 905 (2010).CrossRefGoogle Scholar
  46. 46.
    D. LeBoeuf, N. Doiron-Leyraud, J. Levallois, R. Daou, J.-B. Bonnemaison, N. E. Hussey, L. Balicas, B. J. Ramshaw, R. Liang, D. A. Bonn, W. N. Hardy, S. Adachi, C. Proust, and L. Taillefer, Nature 450, 533 (2007).ADSCrossRefGoogle Scholar
  47. 47.
    S. Badoux, W. Tabis, F. Laliberte, G. Grissonnanche, B. Vignolle, D. Vignolles, J. Beard, D. A. Bonn, W. N. Hardy, R. Liang, N. Doiron-Leyraud, L. Taillefer, and C. Proust, Nature 531, 210 (2016).ADSCrossRefGoogle Scholar
  48. 48.
    J. Chang, R. Daou, C. Proust, D. LeBoeuf, N. Doiron-Leyraud, F. Laliberte, B. Pingault, B. J. Ramshaw, R.Liang, D. A. Bonn, W. N. Hardy, H. Takagi, A. B. Antunes, I. Sheikin, K. Behnia, and L. Taillefer, Phys. Rev. Lett. 104, 057005 (2010).ADSCrossRefGoogle Scholar
  49. 49.
    M. V. Kartsovnik, P. D. Grigoriev, W. Biberacher, N. D. Kushch, and P. Wyder, Phys. Rev. Lett. 89, 126802 (2002).ADSCrossRefGoogle Scholar
  50. 50.
    P. D. Grigoriev, Phys. Rev. B 67, 144401 (2003); arXiv:cond-mat/0204270.ADSCrossRefGoogle Scholar
  51. 51.
    P. D. Grigoriev, A. A. Sinchenko, P. Lejay, A. Hadj-Azzem, J. Balay, O. Leynaud, V. N. Zverev, and P. Monceau, Eur. Phys. J. B 89, 151 (2016).ADSCrossRefGoogle Scholar
  52. 52.
    R. B. Dingle, Proc. R. Soc. A 211, 517 (1952).ADSCrossRefGoogle Scholar
  53. 53.
    Yu. A. Bychkov, Sov. Phys. JETP 12, 977 (1961).Google Scholar
  54. 54.
    V. M. Gvozdikov, Sov. Phys. Solid State 26, 1560 (1984).Google Scholar
  55. 55.
    T. Champel and V. P. Mineev, Philos. Mag. B 81, 55 (2001).ADSCrossRefGoogle Scholar
  56. 56.
    M. V. Kartsovnik, P. A. Kononovich, V. N. Laukhin, and I. F. Shchegolev, JETP Lett. 48, 541 (1988).ADSGoogle Scholar
  57. 57.
    R. Yagi, Y. Iye, T. Osada, and S. Kagoshima, J. Phys. Soc. Jpn. 59, 3069 (1990).ADSCrossRefGoogle Scholar
  58. 58.
    K. Yamaji, J. Phys. Soc. Jpn. 58, 1520 (1989).ADSCrossRefGoogle Scholar
  59. 59.
    O. K. Andersen, A. I. Liechtenstein, O. Jepsen, and F. Paulsen, J. Phys. Chem. Solids 56, 1573 (1995).ADSCrossRefGoogle Scholar
  60. 60.
    C. Bergemann, S. R. Julian, A. P. Mackenzie, S. Nishi Zaki, and Y. Maeno, Phys. Rev. Lett. 84, 2662 (2000).ADSCrossRefGoogle Scholar
  61. 61.
    P. D. Grigoriev, Phys. Rev. B 81, 205122 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRussian Academy of SciencesChernogolovkaRussia
  2. 2.National University of Science and Technology MISiSMoscowRussia
  3. 3.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  4. 4.Institut Laue-LangevinGrenoble Cedex 9France
  5. 5.LPMMC (UMR 5493), Université de Grenobles-Alpes and CNRSMaison des MagistèresGrenoble Cedex 9France

Personalised recommendations